Patents by Inventor Michel A. Daage

Michel A. Daage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030144130
    Abstract: A process for activating a supported metal catalyst or catalyst precursor useful for the hydrogenation of carbon monoxide to form a mixture of hydrocarbons, comprising reducing with a hydrogen-containing gas at elevated temperature so that at least a portion is in the metallic state, impregnating under a non-oxidizing atmosphere with a solution of at least one member selected from the group consisting of ammonium salts, alkyl ammonium salts and weak organic acids, optionally further including ammonia, to the point where it has absorbed a volume of solution equal to at least about 10% of its calculated pore volume, oxidizing with a gaseous oxidant in the presence of the impregnating solution and reducing with hydrogen-containing gas at elevated temperatures to form an active catalyst. The steps beginning with the impregnation may be repeated. Optionally, the catalyst may be calcined after the oxidation step and/or passivated after activation.
    Type: Application
    Filed: January 29, 2002
    Publication date: July 31, 2003
    Inventors: Janet Renee Clark, Michel Daage, Russell John Koveal
  • Publication number: 20030132137
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: July 17, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6559191
    Abstract: A method is disclosed for enhancing the activity of a particulate Dispersed Active Metal (DAM) catalyst during operation of a reactor wherein the hydrogenation of carbon monoxide to produce a mixture of hydrocarbons is being carried out comprising withdrawing a mixture of hydrocarbons and a portion of the DAM catalyst from the reactor, reducing the hydrocarbon content thereof with hydrogen at a temperature above the temperature of the reactor, oxidizing a slurry of the catalyst particles in a suitable fluid at low temperature to form an oxidized precursor, reducing the precursor at elevated temperature to reform the catalyst and returning it to the reactor. The catalyst may be passivated before returning to the reactor.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: May 6, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Russell John Koveal, Michel A. Daage
  • Publication number: 20030064885
    Abstract: A process of enhancing both the activity and the methane selectivity of a Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form a stable, unique oxidized catalyst precursor that is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature, wherein reducible promoter metals comprising one or more of rhenium, ruthenium, palladium, iron and cobalt are added to the DAM. The promoter metals are mixed with the oxidized catalyst precursor as a solution of their reducible salts. The oxidized catalyst precursors are again recovered from the mixture and treated with hydrogen-containing gas to simultaneously form the metals and reactivate the DAM catalyst.
    Type: Application
    Filed: November 1, 2002
    Publication date: April 3, 2003
    Inventors: Alla Jurievna Krylova, Albert L?apos;Vovich Lapidus, Lilia Vadimovna Sineva, Michel A. Daage, Russell John Koveal
  • Patent number: 6531518
    Abstract: A process of enhancing both the activity and the methane selectivity of a particulate Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form a stable, unique oxidized catalyst precursor that is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature, wherein one or more promoter metal oxides of chromium, lanthanum and manganese are added to the DAM. Precursors of the promoter metal oxides may be combined with the DAMs prior to or during formation of the initial slurry, during the oxidation step or between recovery of the oxidized catalyst precursor and treatment of it with hydrogen-containing gas to reactivate the catalyst. Conversion of the precursors to the promoter metal oxides is carried out prior to the treatment with hydrogen-containing gas unless said treatment itself produces the conversion.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 11, 2003
    Assignee: ExxonMobil Research and Engineering Co.
    Inventors: Albert L'Vovich Lapidus, Alla Jurievna Krylova, Lilia Vadimovna Sineva, Russell John Koveal, Michel A. Daage
  • Patent number: 6455596
    Abstract: A process for the desulfurization, and reactivation of a sulfur deactivated catalyst constituted of cobalt composited with a titania support. The sulfur deactivated cobalt titania catalyst is first contacted with a gaseous stream of molecular oxygen at temperature sufficiently high to oxidize the sulfur component of the catalyst. The sulfur oxidized catalyst is next contacted with a liquid, preferably water, to remove the oxide, or oxides of the sulfur. The catalyst is then contacted with a reducing agent, suitably hydrogen, to restore the activity of the catalyst. During the treatment there is no substantial loss, if any, of cobalt from the catalyst.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: September 24, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Albert L'Vovich Lapidus, Michel A. Daage, Russell J. Koveal, Alla Jurievna Krylova, Anatoliy B. Erofeev
  • Publication number: 20020115733
    Abstract: A process of enhancing both the activity and the methane selectivity of a particulate Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form a stable, unique oxidized catalyst precursor that is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature, wherein one or more promoter metal oxides of chromium, lanthanum and manganese are added to the DAM. Precursors of the promoter metal oxides may be combined with the DAMs prior to or during formation of the initial slurry, during the oxidation step or between recovery of the oxidized catalyst precursor and treatment of it with hydrogen-containing gas to reactivate the catalyst. Conversion of the precursors to the promoter metal oxides is carried out prior to the treatment with hydrogen-containing gas unless said treatment itself produces the conversion.
    Type: Application
    Filed: November 19, 2001
    Publication date: August 22, 2002
    Inventors: Albert L?apos;vovich Lapidus, Alla Jurievna Krylova, Lilia Vadimovna Sineva, Russell John Koveal, Michel A. Daage
  • Patent number: 6355593
    Abstract: A process of enhancing both the activity and the methane selectivity of a Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form an oxidized catalyst precursor that is unique in comparison to those formed by conventional high temperature deactivation processes. The oxidized catalyst precursor, which is stable, is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature. The process is useful in a wide variety of DAMs formed by art-recognized techniques. The process is equally applicable to the enhanced catalysts formed from the oxidized precursors and their use in hydrogenation reactions.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michel A. Daage, Russell John Koveal, Albert L'Vovich Lapidus, Alla Jurievna Krylova, Shawn Paul Brennan
  • Publication number: 20020019309
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide hydrogenation reactions, particularly Fischer-Tropsch reactions; the catalyst compositions, use of the catalyst compositions for conducting such reactions, and the products of these reactions. The steps of the process for producing the catalyst comprise mixing together in solution (a) a compound, or salt of a Group VIII metal, e.g., Co(NO3)2; (b) a compound, or salt of magnesium, e.g., Mg(NO3)2; (c) a refractory inorganic oxide, e.g., kieselguhr; and (d) an ammonium or alkali metal salt precipitating agent, e.g., Na2CO3, to produce a precipitated solids mass, or catalyst precursor, shaping and then reducing the precipitated solids mass, or catalyst precursor, to form a catalyst. In the preparation a solution of (a)+(b) can be added to a solution of (c) and (d) and precipitated as a particulate solids mass.
    Type: Application
    Filed: October 15, 1999
    Publication date: February 14, 2002
    Inventors: ALBERT L?apos;VOVICH LAPIDUS, ALLA JURIEVNA KRYLOVA, RUSSELL J. KOVEAL, MICHEL A. DAAGE
  • Patent number: 6331574
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide hydrogenation reactions, especially Fischer-Tropsch reactions. The steps of the process begin with the activation, or reactivation, of a deactivated catalyst, or with the preparation and activation of a fresh catalyst. In accordance with the latter, the steps of the process comprise, first contacting, in one or more steps, a powder or preformed, particulate refractory inorganic support with a liquid, or solution in which there is dispersed or dissolved a compound, or salt of a catalytically active metal, or metals, to impregnate and deposit the metal, or metals, upon the support, or powder. The metal, or metals, impregnated support is calcined following each impregnation step to form oxides of the deposited metal, or metals.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: December 18, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Albert L'Vovoch Lapidus, Alla Jurievna Krylova, Michel A. Daage, Russell J. Koveal, Rocco A. Fiato
  • Publication number: 20010047041
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide hydrogenation reactions, especially Fischer-Tropsch reactions. The steps of the process begin with the activation, or reactivation, of a deactivated catalyst, or with the preparation and activation of a fresh catalyst. In accordance with the latter, the steps of the process comprise, first contacting, in one or more steps, a powder or preformed, particulate refractory inorganic support with a liquid, or solution in which there is dispersed or dissolved a compound, or salt of a catalytically active metal, or metals, to impregnate and deposit the metal, or metals, upon the support, or powder. The metal, or metals, impregnated support is calcined following each impregnation step to form oxides of the deposited metal, or metals.
    Type: Application
    Filed: May 18, 2001
    Publication date: November 29, 2001
    Inventors: Abert L?apos;Vovoch Lapidus, Alla Jurievna Krylova, Michel A. Daage, Russell J. Koveal, Rocco A. Fiato
  • Publication number: 20010042701
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20010042702
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6300268
    Abstract: A process for the desulfurization, and reactivation of a sulfur deactivated catalyst constituted of cobalt composited with a titania support. The sulfur deactivated cobalt titania catalyst is first contacted with a gaseous stream of molecular oxygen at temperature sufficiently high to oxidize the sulfur component of the catalyst. The sulfur oxidized catalyst is next contacted with a liquid, preferably water, to remove the oxide, or oxides of the sulfur. The catalyst is then contacted with a reducing agent, suitably hydrogen, to restore the activity of the catalyst. During the treatment there is no substantial loss, if any, of cobalt from the catalyst.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: October 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Albert L'Vovich Lapidus, Michel A. Daage, Russell J. Koveal, Alla Jurievna Krylova, Anatoliy B. Erofeev
  • Publication number: 20010006984
    Abstract: A process for the desulfurization, and reactivation of a sulfur deactivated catalyst constituted of cobalt composited with a titania support. The sulfur deactivated cobalt titania catalyst is first contacted with a gaseous stream of molecular oxygen at temperature sufficiently high to oxidize the sulfur component of the catalyst. The sulfur oxidized catalyst is next contacted with a liquid, preferably water, to remove the oxide, or oxides of the sulfur. The catalyst is then contacted with a reducing agent, suitably hydrogen, to restore the activity of the catalyst. During the treatment there is no substantial loss, if any, of cobalt from the catalyst.
    Type: Application
    Filed: January 9, 2001
    Publication date: July 5, 2001
    Inventors: Albert L?apos;Vovich Lapidus, Michel A. Daage, Russell J. Koveal, Alla Jurievna Krylova, Anatoliy B. Erofeev
  • Patent number: 6245221
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh, and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: June 12, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: William C. Baird, Jr., Gary B. McVicker, James J. Schorfheide, Darryl P. Klein, Sylvain S. Hantzer, Michel Daage, Michele S. Touvelle, Edward S. Ellis, David E. W. Vaughan, Jingguang Chen
  • Patent number: 6221240
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: April 24, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 6193877
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulftir compounds found in petroleum and petrochemical streams. HDS is preferably conducted in a mixed bed containing: (a) a Ni-based catalyst on an inorganic refractory support, and (b) a hydrogen sulfide sorbent material. The desulfurized stream can then be passed to further processing, including aromatics saturation and/or ring opening.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 27, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, William C. Baird, Jr., James J. Schorfheide, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E. W. Vaughan, Jingguang Chen
  • Patent number: 6103106
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E.W. Vaughan, Jingguang Chen, Sylvain S. Hantzer
  • Patent number: 6087544
    Abstract: A process for producing distillate fuels, such as diesel fuels and jet fuels having both high lubricity and low sulfur levels. Such fuels are produced by fractionating a distillate feedstream into a light fraction which is relatively low in lubricity and which contains from about 50 to 100 wppm of sulfur and a heavy fraction having a relatively high lubricity. The first fraction is hydrotreated to remove substantially all of the sulfur and is then blended with the second fraction to produce a distillate fuel product having relatively low sulfur levels and a relatively high lubricity.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: July 11, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert J. Wittenbrink, Darryl P. Klein, Michele S. Touvelle, Michel Daage, Paul J. Berlowitz