Patents by Inventor Michel G. Bergeron

Michel G. Bergeron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100279273
    Abstract: The present invention relates to methods of detection, as well as assays, reagents and kits for the specific detection of 15 clinically important respiratory viruses including influenza A and B viruses, human respiratory syncytial viruses, human metapneumoviruses, human enteroviruses, all serotypes of rhinoviruses, 7 serotypes of adenoviruses, parainfluenza viruses types 1, 2, 3, and 4, as well as coronaviruses NL, 229E, OC43, and SARS-CoV. The present invention allows for the detection of each of these respiratory viruses in a single assay.
    Type: Application
    Filed: July 17, 2008
    Publication date: November 4, 2010
    Applicant: UNIVERSITE LAVAL
    Inventors: Michel G. Bergeron, Johanne Frenette, Maurice Boissinot, Eric Leblanc, Guy Boivin, Natasha Dionne
  • Publication number: 20100267012
    Abstract: Compositions and methods for the detection of vancomycin-resistant pathogens using primers and/or probes to the vanA and vanB genes.
    Type: Application
    Filed: September 14, 2006
    Publication date: October 21, 2010
    Inventors: Michel G. Bergeron, Maurice Boissinot, Ann Huletsky, Christian Menard, Marc Ouellette, Francois Picard, Paul H. Roy
  • Publication number: 20090068641
    Abstract: Four highly conserved genes, encoding translation elongation factor Tu, translation elongation factor G, the catalytic subunit of proton-translocating ATPase and the RecA recombinase, are used to generate species-specific, genus-specific, family-specific, group-specific and universal nucleic acid probes and amplification primers to rapidly detect and identify algal, archaeal, bacterial, fungal and parasitical pathogens from clinical specimens for diagnosis. The detection of associated antimicrobial agents resistance and toxin genes are also under the scope of the present invention.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 12, 2009
    Inventors: Michel G. Bergeron, Maurice Boissinot, Ann Huletsky, Christian Menard, Marc Ouellette, Francois J. Picard, Paul H. Roy
  • Publication number: 20090053703
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventors: Michel G. Bergeron, Marc Ouellette, Paul H. Roy
  • Publication number: 20090053702
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventors: Michel G. Bergeron, Marc Ouellette, Paul H. Roy
  • Publication number: 20090047671
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 19, 2009
    Inventors: Michel G. Bergeron, Marc Quellette, Paul H. Roy
  • Patent number: 7465295
    Abstract: This invention relates to a vaginal/ano-rectal applicator for the uniform delivery of any topical formulations to treat and/or prevent any infection and/or abnormal conditions of mucosa cavity caused by any pathogen and/or disease. The present applicator comprises a longitudinally extending body that has proximal and distal ends. The proximal end is located close to the external site of a mucosal cavity accessible to a user. The body has external perforations, made as a series of slots or holes, for uniform distribution of any formulation to be delivered to the user's mucosal cavity. Upon insertion of the applicator and expulsion of the formulation in the mucosal cavity, the formulation, which is contained in a reservoir, travels through a diffusion channel having a small volume, prior to being expelled through the perforations.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: December 16, 2008
    Inventors: Michel G. Bergeron, Andrew Desormeaux, Rabeea F. Omar
  • Patent number: 7357930
    Abstract: A formulation is disclosed for the treatment of diseases caused by an infectious agent which acquires host membranes protein during its life cycle. The formulation is a targeting pharmaceutical composition. It comprises a ligand capable of binding the host membrane proteins coupled to a lipid-comprising vesicle, which may comprise or not a drug effective in the treatment of the disease. Specific liposomes bearing anti-HLA-DR or anti-CD4 antibodies comprising or not antiviral drugs, namely anti-HIV drugs, are disclosed and claimed. A method of formulation as well as a method of using the formulation in the treatment of a disease are also disclosed.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: April 15, 2008
    Assignee: Infectio Recherche Inc.
    Inventors: Michel G. Bergeron, Andre Desormeaux, Michel J. Tremblay
  • Patent number: 7192607
    Abstract: This invention relates to formulations for the prevention of infection and/or abnormal conditions of mucosae and/or skin caused by any pathogen and/or any disease, and more particularly for the prevention of sexually transmitted infections specially HIV and HSV. This invention also relates to formulations for the treatment of infection and/or abnormal conditions of skin and/or mucosac and more particularly for the treatment of herpetic lesions. The formulations could be used as a prophylactic agent to prevent accidental infection of health care workers. The formulations could be used for the healing and/or treatment of bum wounds and prevention of further infection. This invention also relates to the development of a unique vaginal/ano-rectal applicator for the uniform delivery of any topical formulations to treat and/or prevent any infection and/or abnormal conditions of mucosa cavity caused by any pathogen and/or disease.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: March 20, 2007
    Assignee: Infectio Recherche Inc
    Inventors: Michel G. Bergeron, André Désormeaux, Rabeea F. Omar, Julianna Juhasz
  • Publication number: 20040185478
    Abstract: DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample DNA from (i) any bacterium, (ii) the species Streptococcus agalactiae, Staphylococcus saprophyticus, Enterococcus faecium, Neisseria meningitidis, Listeria monocytogenes and Candida albicans, and (iii) any species of the genera Streptococcus, Staphylococcus, Enterococcus, Neisseria and Candida are disclosed. DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample antibiotic resistance genes selected from the group consisting of blatem, blarob, blashv, blaoxa, blaZ, aadB, aacC1, aacC2, aacC3, aacA4, aac6′-lla, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6′)-aph(2″), aad(6′), vat, vga, msrA, sul and int are also disclosed. The above microbial species, genera and resistance genes are all clinically relevant and commonly encountered in a variety of clinical specimens.
    Type: Application
    Filed: January 7, 2004
    Publication date: September 23, 2004
    Inventors: Michel G. Bergeron, Francois J. Picard, Marc Ouellette, Paul H. Roy
  • Publication number: 20030180733
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories.
    Type: Application
    Filed: April 11, 2002
    Publication date: September 25, 2003
    Inventors: Michel G. Bergeron, Marc Ouellette, Paul H. Roy
  • Publication number: 20030133969
    Abstract: This invention relates to formulations for the prevention of infection and/or abnormal conditions of mucosae and/or skin caused by any pathogen and/or any disease, and more particularly for the prevention of sexually transmitted infections specially HIV and HSV. This invention also relates to formulations for the treatment of infection and/or abnormal conditions of skin and/or mucosac and more particularly for the treatment of herpetic lesions. The formulations could be used as a prophylactic agent to prevent accidental infection of health care workers. The formulations could be used for the healing and/or treatment of bum wounds and prevention of further infection. This invention also relates to the development of a unique vaginal/ano-rectal applicator for the uniform delivery of any topical formulations to treat and/or prevent any infection and/or abnormal conditions of mucosa cavity caused by any pathogen and/or disease.
    Type: Application
    Filed: November 7, 2002
    Publication date: July 17, 2003
    Inventors: Michel G. Bergeron, Andre Desormeaux, Rabeea F. Omar, Julianna Juhasz
  • Publication number: 20030088217
    Abstract: This invention relates to a vaginal/ano-rectal applicator for the uniform delivery of any topical formulations to treat and/or prevent any infection and/or abnormal conditions of mucosa cavity caused by any pathogen and/or disease. The present applicator comprises a longitudinally extending body that has proximal and distal ends. The proximal end is located close to the external site of a mucosal cavity accessible to a user. The body has external perforations, made as a series of slots or holes, for uniform distribution of any formulation to be delivered to the user's mucosal cavity. Upon insertion of the applicator and expulsion of the formulation in the mucosal cavity, the formulation, which is contained in a reservoir, travels through a diffusion channel having a small volume, prior to being expelled through the perforations.
    Type: Application
    Filed: July 5, 2002
    Publication date: May 8, 2003
    Inventors: Michel G. Bergeron, Andre Desormeaux, Rabeea F. Omar
  • Publication number: 20030049636
    Abstract: DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample DNA from (i) any bacterium, (ii) the species Streptococcus agalactiae, Staphylococcus saprophyticus, Enterococcus faecium, Neisseria meningitidis, Listeria monocytogenes and Candida albicans, and (iii) any species of the genera Streptococcus, Staphylococcus, Enterococcus, Neisseria and Candida are disclosed. DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample antibiotic resistance genes selected from the group consisting of blatem, blarob, blashv, blaoxa, blaZ, aadB, aacC1, aacC2, aacC3, aacA4, aac6′-lla, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6′)-aph(2″), aad(6′), vat, vga, msrA, sul and int are also disclosed. The above microbial species, genera and resistance genes are all clinically relevant and commonly encountered in a variety of clinical specimens.
    Type: Application
    Filed: November 20, 2001
    Publication date: March 13, 2003
    Inventors: Michel G. Bergeron, Francois J. Picard, Marc Ouellette, Paul H. Roy
  • Patent number: 6500460
    Abstract: This invention relates to formulations for the prevention of infection and/or abnormal conditions of mucosae and/or skin caused by any pathogen and/or any disease, and more particularly for the prevention of sexually transmitted infections specially HIV and HSV. This invention also relates to formulations for the treatment of infection and/or abnormal conditions of skin and/or mucosae and more particularly for the treatment of herpetic lesions. The formulations could be used as a prophylactic agent to prevent accidental infection of health care workers. The formulations could be used for the healing and/or treatment of burn wounds and prevention of further infection. This invention also relates to the development of a unique vaginal/ano-rectal applicator for the uniform delivery of any topical formulations to treat and/or prevent any infection and/or abnormal conditions of mucosa cavity caused by any pathogen and/or disease.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: December 31, 2002
    Assignee: Infection-Recherche Inc.
    Inventors: Michel G. Bergeron, André Désormeaux, Rabeea F. Omar, Julianna Juhasz
  • Publication number: 20020055101
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories.
    Type: Application
    Filed: December 1, 1999
    Publication date: May 9, 2002
    Inventors: MICHEL G. BERGERON, MARC OUELLETTE, PAUL H. ROY
  • Patent number: 6068851
    Abstract: This invention relates to formulations comprising film-forming components capable of forming per se a physical barrier to pathogens. Thermoreversible gels such as poloxamers are particularly preferred for that use. The film-forming formulations may further comprise microbicides, spermicides or any other drug, which choice is guided by the pathogen, organism or the disease to be inactivated or treated. The formulations are therefore efficient as a physical, and optionally, as a chemical or pharmacological barrier as well as usable as a sustained drug-release system at the locus of administration. A part of the drug may also be entrapped in liposomes or other drug carriers. These formulations are intended for use in the prevention of sexually transmitted diseases, as well as in the treatment of infections, cancer, inflammation or any disease or state which requires a pharmacological treatment. Formulations are applicable to mucosae, skin and eye, for example.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: May 30, 2000
    Assignee: Infectio Recherche, Inc.
    Inventors: Michel G. Bergeron, Andre Desormeaux, Michel Tremblay
  • Patent number: 6001564
    Abstract: The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: December 14, 1999
    Assignee: Infectio Diagnostic, Inc.
    Inventors: Michel G. Bergeron, Marc Ouellette, Paul H. Roy
  • Patent number: 5994066
    Abstract: The present invention relates to a method for universal detection of bacteria in biological samples and for specific detection of Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus saprophyticus, Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae in urine or any other biological samples, said method comprising denaturation of bacterial DNA to single stranded form and either fixing it on a support or leaving it in solution, contacting said single stranded genetic material with a labeled probe selected from the group consisting of i) fragments of chromosomal DNA of the above-mentioned bacteria and ii) synthetic oligonucleotides whose sequences are derived either from the said fragments of chromosomal DNAs or from sequences available in data banks, all (i and ii) probes being capable to hybridize specifically to their chromosomal DNA or, in case of universal probes, to any bacterial chromosomal DNA.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: November 30, 1999
    Assignee: Infectio Diagnostic, Inc.
    Inventors: Michel G. Bergeron, Fran.cedilla.ois J. Picard, Marc Ouellette, Paul H. Roy
  • Patent number: 5773027
    Abstract: A method is disclosed for the treatment of viral diseases comprising the administration of antiviral agents encapsulated in liposomes. Also provided are formulations of liposomes for the treatment of viral diseases and more particularly for the treatment of infections caused by viruses like human immunodeficiency virus (HIV) and cytomegalovirus (CMV). These formulations of liposomes are composed of specific classes of lipid components and contain an entrapped drug effective against the viral disease. These liposomal formulations of antiviral drugs allow high cellular penetration in different cell lines, good in vitro antiviral efficacy against HIV and CMV replication, efficient in vivo targeting of HIV reservoirs and a marked improvement of the pharmacokinetics of drugs.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: June 30, 1998
    Assignee: Michael G. Bergeron
    Inventors: Michel G. Bergeron, Andre Desormeaux