Patents by Inventor Michel Leclerc

Michel Leclerc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131996
    Abstract: A clamping assembly and a kit therefor are provided. The clamping assembly has a clamping component configured for selective attachment to a member of a vehicle, and a separate toolless fastener configured to selectively fasten an accessory to the clamping component.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Inventors: Jean-Michel LECLERC, Hakim NAJEM, Alexandre POUDRIER, Simon BOUCHARD
  • Publication number: 20240116459
    Abstract: A mounting system and a kit for installing an accessory on a vehicle are disclosed. The mounting system has a base including a foot portion and a first interface portion. The base defines an axis extending through the first interface portion. The mounting system has an interchangeable swivel member including a second interface portion and an accessory portion. The first interface portion and the second interface portion being configured to selectively engage each other in a first configuration and a second configuration. The mounting system has a resilient connection assembly configured to resiliently connect the interchangeable swivel member to the base. The resilient connection assembly includes a biasing element configured to exert a biasing force to axially bias the first interface portion towards the second interface portion.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 11, 2024
    Inventors: Philippe JAILLET-GOSSELIN, Frederik BESSETTE, Jean-Michel LECLERC, Michel PELLERIN, Martin PROVENCHER, Alexandra BANVILLE
  • Patent number: 11921000
    Abstract: There is provided optical power loss measurement method and system for that aims to provide a more productive way to perform optical power loss measurements involving test units typically at different locations. Visual fiber finder light can be used to assist the user at the other end of the optical fiber link under test in identifying where to connect the power meter unit. A visual fiber finder light and test light are combined on a same output port of a light source unit at one end of the optical fiber link under test wherein visual fiber finder light is interleaved with test light in a cyclic sequence so that both are not active at the same time. The optical power meter unit determines a time slot when to measure test light in accordance with the given cyclic sequence.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: March 5, 2024
    Assignee: EXFO Inc.
    Inventor: Michel Leclerc
  • Patent number: 11906389
    Abstract: There is provided a system and a method for assisting a technician in fiber optic cable splices and comprising a pair of test units including an OTDR, an optical switch, a tone generator and a tone detector to automate the splicing process and testing. The test units may be in communication with a wireless portable device used by the splicing technician and controlled therefrom. In one embodiment, the test units are driven by a test orchestrator application (e.g., server-based) to switch fibers, perform continuity tests and/or splice quality tests, triggered by the technician's portable device.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: February 20, 2024
    Assignee: EXFO Inc.
    Inventors: Stephane Perron, Michel Leclerc
  • Patent number: 11879802
    Abstract: There are provided methods and systems for testing the continuity of optical fiber links under test and/or a fiber arrangement, polarity or mapping of optical fiber connections within optical devices under test using the backscattering pattern as a signature. The device under test may comprises a single fiber, a duplex link, a multifiber cable or another multi-port device such as a backplane device.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: January 23, 2024
    Assignee: EXFO Inc.
    Inventors: Stephane Perron, Michel Leclerc, Pascal Gosselin-Badaroudine
  • Publication number: 20240012167
    Abstract: There is provided a method and an apparatus of fiber optic distributed acoustic sensing (DAS) which can use low-cost coherent laser as well as low-cost acquisition and processing electronics and which can still provide reliable monitoring results for optical fiber monitoring and troubleshooting applications in optical fiber telecommunication networks. Such low-cost solution is made possible by employing grouped data signal processing. Data is processed over independent groups of data to provide an independent DAS signal for each group. This allows measurements to be less sensitive to laser fluctuations and thereby reduces coherent laser technical specification requirements and allows the use of a low-cost coherent laser (thereby reducing the cost of the laser) as well as low-cost acquisition and processing electronics.
    Type: Application
    Filed: June 5, 2023
    Publication date: January 11, 2024
    Inventors: Hongxin CHEN, Michel LEBLANC, Michel LECLERC
  • Publication number: 20230228649
    Abstract: There is provided herein a solution for measuring the optical power loss of duplex optical-fiber devices under test, and particularly those terminated with a duplex connector interface, which allows for a one-cord or one-cord equivalent testing method whichever the format of the duplex connector interface of the optical-fiber device under test, and this without disconnecting the optical fibers of the device under test from their duplex native connector interface. There is provided an optical-fiber expansion device to be used to interconnect and adapt a power meter instrument to a variety of duplex connectors. The proposed optical-fiber expansion device comprises a pair of optical fibers having a core diameter and a numerical aperture that are greater than those of the optical fiber in the DUT connector interface, so as to make it compatible with the one-cord testing method.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 20, 2023
    Inventors: Michel LECLERC, Nicholas COLE
  • Patent number: 11650128
    Abstract: There are provided methods and systems that enable the use of the backscattering pattern produced by an optical fiber in an OTDR trace as a signature (also referred to herein as the “RBS fingerprint”) to recognize an optical fiber. It was found that it may be difficult to obtain repeatable signatures as those are sensitive to the wavelength of the OTDR laser source and the temperature of the fiber. OTDR methods and systems that are adapted to compare the backscattering pattern in a more repeatable manner are therefore provided. Once the repeatability issue is overcome, such signature can be used for identification purposes and enable new applications.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: May 16, 2023
    Assignee: EXFO Inc.
    Inventors: Michel Leclerc, Pascal Gosselin-Badaroudine, Stephane Perron
  • Publication number: 20220390321
    Abstract: There is provided a technique to reduce the Rayleigh coherence noise in OTDR measurements using spectral averaging of OTDR traces while at least partly cancelling chromatic dispersion pulse broadening on the averaged OTDR trace by applying a chromatic dispersion correction prior to averaging the OTDR traces. By correcting for chromatic dispersion pulse broadening, it allows to reduce the Rayleigh coherence noise without impacting the OTDR spatial resolution.
    Type: Application
    Filed: May 6, 2022
    Publication date: December 8, 2022
    Inventor: Michel LECLERC
  • Publication number: 20220268665
    Abstract: There is provided optical power loss measurement method and system for that aims to provide a more productive way to perform optical power loss measurements involving test units typically at different locations. Visual fiber finder light can be used to assist the user at the other end of the optical fiber link under test in identifying where to connect the power meter unit. A visual fiber finder light and test light are combined on a same output port of a light source unit at one end of the optical fiber link under test wherein visual fiber finder light is interleaved with test light in a cyclic sequence so that both are not active at the same time. The optical power meter unit determines a time slot when to measure test light in accordance with the given cyclic sequence.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 25, 2022
    Inventor: Michel LECLERC
  • Patent number: 11340137
    Abstract: There are provided techniques for characterizing and testing a cable routing connection configuration connection arrangement comprising a plurality of optical fiber links connected between at least a first connection device at a first end and a second multi-fiber connection device at a second end. Test light is injected into one or more of the optical fiber links via corresponding optical fiber ports of the first connection device. At least one image of the second multi-fiber connection device is captured. Test light exiting the optical fiber link(s) through optical fiber port(s) of the second multi-fiber connection device is imaged as light spot(s) in the captured image. Positions on the second multi-fiber connection device that corresponds to the optical fiber port(s) are determined based on a pattern of the light spot(s) in the captured image. In some implementations, the provided techniques allow detection or verification of cable routing connection configurations at multi-fiber distribution panels.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 24, 2022
    Assignee: EXFO Inc.
    Inventors: Michel Leclerc, Mario L'Heureux, Stephane Perron
  • Publication number: 20220128434
    Abstract: There are provided methods and systems for testing the continuity of optical fiber links under test and/or a fiber arrangement, polarity or mapping of optical fiber connections within optical devices under test using the backscattering pattern as a signature. The device under test may comprises a single fiber, a duplex link, a multifiber cable or another multi-port device such as a backplane device.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 28, 2022
    Inventors: Stephane PERRON, Michel LECLERC, Pascal GOSSELIN-BADAROUDINE
  • Publication number: 20220038177
    Abstract: There are provided herein test instruments, devices and methods for measuring the optical power loss of optical-fiber devices under test, and particularly those terminated with multifiber connectors, which allows for a one-cord or one-cord equivalent reference method whichever the pinning of the actual optical-fiber device under test. There is proposed to add an optical-fiber expansion device to convert the pinning of the input interface of the power meter instrument from pinned to unpinned or vice-versa, while not adding extra measurement uncertainty. This is accomplished using a patch cord which core diameter is between that of the device under test and that of the input interface of the power meter instrument.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 3, 2022
    Inventors: Gang HE, Michel LECLERC
  • Publication number: 20210404909
    Abstract: There are provided methods and systems that enable the use of the backscattering pattern produced by an optical fiber in an OTDR trace as a signature (also referred to herein as the “RBS fingerprint”) to recognize an optical fiber. It was found that it may be difficult to obtain repeatable signatures as those are sensitive to the wavelength of the OTDR laser source and the temperature of the fiber. OTDR methods and systems that are adapted to compare the backscattering pattern in a more repeatable manner are therefore provided. Once the repeatability issue is overcome, such signature can be used for identification purposes and enable new applications.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 30, 2021
    Inventors: Michel LECLERC, Pascal GOSSELIN-BADAROUDINE, Stephane PERRON
  • Patent number: 11035753
    Abstract: There is provided a test device and a test method that combine both tunable OTDR and WDM power meter functionalities into the same integrated optoelectronic test hardware, such that the tunable OTDR and the WDM power meter functions share optoelectronic components, thereby reducing the hardware cost and the overall form factor and weight of the test device. With the proposed configuration, both tunable OTDR and WDM power meter functionalities may be provided via a single test port to be connected to the optical fiber link under test. By connecting the fiber to a single test port, the number of manipulations to be performed by technicians is reduced and two tests can be performed in a single connection operation out of the same test port.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: June 15, 2021
    Assignee: EXFO Inc.
    Inventors: Jimmy Gagnon, Michel Leclerc, Stephane Perron
  • Publication number: 20200292416
    Abstract: There is provided a test device and a test method that combine both tunable OTDR and WDM power meter functionalities into the same integrated optoelectronic test hardware, such that the tunable OTDR and the WDM power meter functions share optoelectronic components, thereby reducing the hardware cost and the overall form factor and weight of the test device. With the proposed configuration, both tunable OTDR and WDM power meter functionalities may be provided via a single test port to be connected to the optical fiber link under test. By connecting the fiber to a single test port, the number of manipulations to be performed by technicians is reduced and two tests can be performed in a single connection operation out of the same test port.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Applicant: EXFO Inc.
    Inventors: Jimmy GAGNON, Michel LECLERC, Stephane PERRON
  • Publication number: 20200124498
    Abstract: There are provided techniques for characterizing and testing a cable routing connection configuration connection arrangement comprising a plurality of optical fiber links connected between at least a first connection device at a first end and a second multi-fiber connection device at a second end. Test light is injected into one or more of the optical fiber links via corresponding optical fiber ports of the first connection device. At least one image of the second multi-fiber connection device is captured. Test light exiting the optical fiber link(s) through optical fiber port(s) of the second multi-fiber connection device is imaged as light spot(s) in the captured image. Positions on the second multi-fiber connection device that corresponds to the optical fiber port(s) are determined based on a pattern of the light spot(s) in the captured image. In some implementations, the provided techniques allow detection or verification of cable routing connection configurations at multi-fiber distribution panels.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: EXFO Inc.
    Inventors: Michel LECLERC, Mario L'HEUREUX, Stephane PERRON
  • Patent number: 10371596
    Abstract: There is provided a method and a system for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs an OTDR acquisition device at the near end of the MPO cable, a loopback device at the far end and an array of signatures detectable by the OTDR, either at the far or the near end. The loopback device allows performing bidirectional OTDR measurements with a single OTDR acquisition device (without moving it from one end to the other) and the signature array provides fiber arrangement/cable type identification or verification.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 6, 2019
    Assignee: EXFO Inc.
    Inventors: Mario L'Heureux, Stephane Perron, Michel Leclerc
  • Patent number: 10288524
    Abstract: There is provided a system and a test instrument for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs a light source and a polarity detector at the near end of the multi-fiber array cable under test, and a loopback device at the far end. The polarity detector comprises light presence detectors used to detect which one of the optical fibers of the multi-fiber array cable returns light looped back at the far end and thereby determine the fiber arrangement and/or the cable type of the multi-fiber array cable.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: May 14, 2019
    Assignee: EXFO Inc.
    Inventors: Michel Leclerc, Mario L'Heureux, Stephane Perron
  • Patent number: D955419
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: June 21, 2022
    Assignee: EXFO INC.
    Inventors: Alexandre Drapeau, Michel Leclerc