Patents by Inventor Michel Masse

Michel Masse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11466568
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems by establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators. The model always reaches an air mass flow balance where the pressure and density is preferably compensated for depth and accounts for the natural ventilation pressure flows due to temperature differences. Model setpoints are checked for safety bounds and sent to real physical control equipment via the basic control system.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 11, 2022
    Assignee: HOWDEN CANADA INC.
    Inventor: Michel Masse
  • Publication number: 20200049007
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems by establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators. The model always reaches an air mass flow balance where the pressure and density is preferably compensated for depth and accounts for the natural ventilation pressure flows due to temperature differences. Model setpoints are checked for safety bounds and sent to real physical control equipment via the basic control system.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventor: Michel Masse
  • Patent number: 10539018
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems composed of PLCs (Programmable Logic Controllers with human machine interfaces from vendors such as Allen-Bradley™, Modicon™ and others) or DCSs (Distributed Control System from vendors such as ABB™ and others) with supervisory control establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: January 21, 2020
    Assignee: HOWDEN ALPHAIR VENTILATING SYSTEMS INC.
    Inventor: Michel Masse
  • Publication number: 20170183967
    Abstract: A modular controlling system for controlling and/or interfacing sophisticated power, communication, monitoring, lighting, ventilation and/or other services systems in complex environments such as underground mines, pharmaceutical laboratories and production facilities and nuclear plants comprises a main processing unit, several communication interface units, several equipment interface units, and a user interface unit. The modular controlling system is configured to be installed in a complex environment such as an underground mine and connected to various mining equipment, including ventilation equipment and environmental sensors. The modular controlling system is generally preprogrammed and preconfigured with all the necessary operating programs, control algorithms and equipment drivers such as to required minimal customization upon installation.
    Type: Application
    Filed: May 11, 2015
    Publication date: June 29, 2017
    Inventors: Michel MASSE, Jocelyn Morier
  • Publication number: 20170089200
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems composed of PLCs (Programmable Logic Controllers with human machine interfaces from vendors such as Allen-Bradley™, Modicon™ and others) or DCSs (Distributed Control System from vendors such as ABB™ and others) with supervisory control establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Applicant: Howden Alphair Ventilating Systems Inc.
    Inventor: Michel Masse
  • Patent number: 9551218
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems composed of PLCs (Programmable Logic Controllers with human machine interfaces from vendors such as Allen-Bradley™, Modicon™ and others) or DCSs (Distributed Control System from vendors such as ABB™ and others) with supervisory control establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: January 24, 2017
    Assignee: HOWDEN ALPHAIR VENTILATING SYSTEMS INC.
    Inventor: Michel Masse
  • Publication number: 20100105308
    Abstract: The optimized mine ventilation system of this invention supplements mine ventilation basic control systems composed of PLCs (Programmable Logic Controllers with human machine interfaces from vendors such as Allen-Bradley™, Modicon™ and others) or DCSs (Distributed Control System from vendors such as ABB™ and others) with supervisory control establishing a dynamic ventilation demand as a function of real-time tracking of machinery and/or personnel location and where this demand is optimally distributed in the work zones via the mine ventilation network and where the energy required to ventilate is minimized while totally satisfying the demand for each work zones. The optimized mine ventilation system operates on the basis of a predictive dynamic simulation model of the mine ventilation network along with emulated control equipment such as fans and air flow regulators.
    Type: Application
    Filed: September 1, 2008
    Publication date: April 29, 2010
    Inventor: Michel Massé