Patents by Inventor Michel Molinier

Michel Molinier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760705
    Abstract: A transalkylation process co-feeds benzene at a relatively high proportion with C9+ aromatics in a feed stream to a transalkylation reactor. At lower proportions (?5 wt %) of benzene, ring loss is greater for benzene than toluene and ring loss is increased by increasing the proportion of benzene in the feed stream. When the benzene is co-fed in a proportion sufficiently greater than 5 weight percent of the feed stream, ring loss is unexpectedly reduced.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: September 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul Podsiadlo, Jeffrey L. Andrews, Michel Molinier
  • Patent number: 11433386
    Abstract: Methods are provided for activation of catalysts comprising low amounts of a hydrogenation metal, such as low amounts of a Group 8-10 noble metal. The amount of hydrogenation metal on the catalyst can correspond to 0.5 wt % or less (with respect to the weight of the catalyst), or 0.1 wt % or less, or 0.05 wt % or less. Prior to loading a catalyst into a reactor, the corresponding catalyst precursor can be first activated in a hydrogen-containing atmosphere containing 1.0 vppm of CO or less. The thus first-activated catalyst can be transferred to a reactor with optional exposure to oxygen during the transfer, where it can be further activated using a hydrogen-containing atmosphere containing 3.0 vppm of CO or higher, to yield a twice-activated catalyst with high performance. The catalyst can be advantageously a transalkylation catalyst or an isomerization catalyst useful for converting aromatic hydrocarbons.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, Paul Podsiadlo, Michel Molinier, Scott J. Weigel, Travis D. Sparks, Jocelyn A. Gilcrest, Joseph E. Gatt
  • Patent number: 11377399
    Abstract: A process and related system for producing para-xylene (PX). In an embodiment, the process includes (a) separating a feed stream comprising C6+ aromatic hydrocarbons into a toluene containing stream and a C8+ hydrocarbon containing stream and (b) contacting at least part of the toluene containing stream with a methylating agent in a methylation unit to convert toluene to xylenes and produce a methylated effluent stream. In addition, the process includes (c) recovering PX from the methylated effluent stream in (b) to produce a PX depleted stream and (d) transalkylating the PX depleted stream to produce a transalkylation effluent stream. The transalkylation effluent stream includes a higher concentration of toluene than the PX depleted stream. Further, the process includes (e) converting at least some ethylbenzene (EB) within the C8+ hydrocarbon containing stream into toluene and (f) flowing the toluene converted in (e) to the contacting in (b).
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: July 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Hari Nair, Scott J. Weigel, Michael Salciccioli, Doron Levin
  • Publication number: 20210387928
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Michel Molinier, Hari Nair, Meha Rungta, Michael Salciccioli, Doron Levin, Scott J. Weigel
  • Patent number: 11198659
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Hari Nair, Meha Rungta, Michel Molinier, Doron Levin, Scott J. Weigel, Michael Salciccioli, John F. Brody
  • Publication number: 20210163379
    Abstract: A transalkylation process co-feeds benzene at a relatively high proportion with C9+ aromatics in a feed stream to a transalkylation reactor. At lower proportions (?5 wt %) of benzene, ring loss is greater for benzene than toluene and ring loss is increased by increasing the proportion of benzene in the feed stream. When the benzene is co-fed in a proportion sufficiently greater than 5 weight percent of the feed stream, ring loss is unexpectedly reduced.
    Type: Application
    Filed: August 12, 2020
    Publication date: June 3, 2021
    Inventors: Paul Podsiadlo, Jeffrey L. Andrews, Michel Molinier
  • Patent number: 10975005
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: April 13, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Meha Rungta, Michel Molinier, Hari Nair, Doron Levin, Scott J. Weigel, Michael Salciccioli
  • Publication number: 20210032182
    Abstract: A process and related system for producing para-xylene (PX). In an embodiment, the process includes (a) separating a feed stream comprising C6+ aromatic hydrocarbons into a toluene containing stream and a C8+ hydrocarbon containing stream and (b) contacting at least part of the toluene containing stream with a methylating agent in a methylation unit to convert toluene to xylenes and produce a methylated effluent stream. In addition, the process includes (c) recovering PX from the methylated effluent stream in (b) to produce a PX depleted stream and (d) transalkylating the PX depleted stream to produce a transalkylation effluent stream. The transalkylation effluent stream includes a higher concentration of toluene than the PX depleted stream. Further, the process includes (e) converting at least some ethylbenzene (EB) within the C8+ hydrocarbon containing stream into toluene and (f) flowing the toluene converted in (e) to the contacting in (b).
    Type: Application
    Filed: November 15, 2018
    Publication date: February 4, 2021
    Inventors: Michel Molinier, Hari Nair, Scott J. Weigel, Michael Salciccioli, Doron Levin
  • Publication number: 20210017103
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: January 21, 2021
    Inventors: Meha Rungta, Michel Molinier, Hari Nair, Doron Levin, Scott J. Weigel, Michael Salciccioli
  • Publication number: 20210017102
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: January 21, 2021
    Inventors: Hari Nair, Meha Rungta, Michel Molinier, Doron Levin, Scott J. Weigel, Michael Salciccioli, John F. Brody
  • Patent number: 10781149
    Abstract: Disclosed is a transalkylation process for making an aromatic material between a light aromatic material and a heavier aromatic material in the presence of hydrogen and a transalkylation catalyst comprising a hydrogenation component and a transalkylation component. The process comprises conducting the transalkylation reaction under conditions conducive to reducing the amount of cyclic compounds in the transalkylation reaction mixture in the beginning phase of the operation that is different from the conditions after the beginning phase. The invention is useful, e.g., in transalkylation between toluene and C9+ aromatic feed materials to produce xylenes and/or benzene.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: September 22, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Jeffrey L. Andrews, Hari Nair
  • Publication number: 20200238271
    Abstract: Methods are provided for activation of catalysts comprising low amounts of a hydrogenation metal, such as low amounts of a Group 8-10 noble metal. The amount of hydrogenation metal on the catalyst can correspond to 0.5 wt % or less (with respect to the weight of the catalyst), or 0.1 wt % or less, or 0.05 wt % or less. Prior to loading a catalyst into a reactor, the corresponding catalyst precursor can be first activated in a hydrogen-containing atmosphere containing 1.0 vppm of CO or less. The thus first-activated catalyst can be transferred to a reactor with optional exposure to oxygen during the transfer, where it can be further activated using a hydrogen-containing atmosphere containing 3.0 vppm of CO or higher, to yield a twice-activated catalyst with high performance. The catalyst can be advantageously a transalkylation catalyst or an isomerization catalyst useful for converting aromatic hydrocarbons.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 30, 2020
    Inventors: Mayank Shekhar, Paul Podsiadlo, Michel Molinier, Scott J. Weigel, Travis D. Sparks, Jocelyn A. Gilcrest, Joseph E. Gatt
  • Patent number: 10265688
    Abstract: A process and catalyst system is disclosed for producing para-xylene from a C8 hydrocarbon mixture comprising ethylbenzene and at least one xylene isomer other than para-xylene. The process modifies the conventional process by operating with a higher weight hourly space velocity, lower pressure and lower hydrogen partial pressure, which allows production of on-specification benzene product without penalty with respect to ethylbenzene conversion, para-xylene approach to equilibrium or xylene losses. The catalyst system comprises a first catalyst bed comprising a first zeolite having a constraint index from 1 to 12 and an average crystal size from 0.1 to 1 micron and a platinum hydrogenation component, and a second catalyst bed comprising a second zeolite having a constraint index ranging from 1 to 12 and an average crystal size of less than 0.1 micron and a rhenium hydrogenation component.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 23, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Hari Nair, Xiaobo Zheng
  • Patent number: 10077220
    Abstract: In a process for producing para-xylene, at least one feed comprising C6+ aromatic hydrocarbons is supplied to a dividing wall distillation column to separate the feed into a C7? aromatic hydrocarbon-containing stream, a C8 aromatic hydrocarbon-containing stream and a C9+ aromatic hydrocarbon-containing stream. At least part of the C8 aromatic hydrocarbon-containing stream is then supplied to a para-xylene recovery unit to recover para-xylene from the C8 aromatic hydrocarbon-containing stream and produce a para-xylene depleted stream. The para-xylene depleted stream is contacted with a xylene isomerization catalyst in a xylene isomerization zone under conditions effective to isomerize xylenes in the para-xylene depleted stream and produce an isomerized stream, which is then at least partially recycled to the para-xylene recovery unit.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 18, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Kevin J. Knob, Dennis J. Stanley, Terri S. Vander Pol, Chunshe J. Cao, Xiaobo Zheng, Thierry LeFlour, Jacques Rault, Stephane Claudel, Isabelle Prevost, Jerome Pigourier, Celia Fernandez
  • Patent number: 10059644
    Abstract: The present invention is an improved process and apparatus for producing para-xylene, particularly with respect to a process that involves the methylation of toluene and/or benzene to selectively produce para-xylene, wherein streams having differing amounts of ethylbenzene are separately treated in the recovery of para-xylene. A first hydrocarbon feed comprising xylenes and ethylbenzene is provided to a first para-xylene adsorption section, and a second hydrocarbon feed comprising xylenes and less EB than the first hydrocarbon feed is provided to a second para-xylene adsorption section. Segregating the feeds with differing ethylbenzene contents increases the overall efficiency of the adsorption of para-xylene by the adsorption units. Efficiency and energy savings may be further improved by subjecting the lower-content ethylbenzene stream to liquid phase isomerization.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert G. Tinger, Dana L. Pilliod, Michel Molinier
  • Publication number: 20170275218
    Abstract: In a process for producing para-xylene, at least one feed comprising C6+ aromatic hydrocarbons is supplied to a dividing wall distillation column to separate the feed into a C7? aromatic hydrocarbon-containing stream, a C8 aromatic hydrocarbon-containing stream and a C9+ aromatic hydrocarbon-containing stream. At least part of the C8 aromatic hydrocarbon-containing stream is then supplied to a para-xylene recovery unit to recover para-xylene from the C8 aromatic hydrocarbon-containing stream and produce a para-xylene depleted stream. The para-xylene depleted stream is contacted with a xylene isomerization catalyst in a xylene isomerization zone under conditions effective to isomerize xylenes in the para-xylene depleted stream and produce an isomerized stream, which is then at least partially recycled to the para-xylene recovery unit.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 28, 2017
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Kevin J. Knob, Dennis J. Stanley, Terri S. Vander Pol, Chunshe J. Cao, Xiaobo Zheng, Thierry LeFlour, Jacques Rault, Stephane Claudel, Isabelle Prevost, Jerome Pigourier, Celia Fernandez
  • Patent number: 9738573
    Abstract: In a process for producing para-xylene, a feed stream comprising C6+ aromatic hydrocarbons is separated into a toluene-containing stream, a C8 aromatic hydrocarbon-containing stream and a C9+ aromatic hydrocarbon-containing stream. The toluene-containing stream is contacted with a methylating agent to convert toluene to xylenes and produce a methylated effluent stream. Para-xylene is recovered from the C8 aromatic hydrocarbon-containing stream and the methylated effluent stream in a para-xylene recovery section to produce a para-xylene depleted stream, which is then contacted with a xylene isomerization catalyst under liquid phase conditions effective to isomerize xylenes in the para-xylene depleted stream and produce an isomerized stream. The C9+-containing stream with a transalkylation catalyst under conditions effective to convert C9+-aromatics to C8?-aromatics and produce a transalkylated stream, which is recycled together with the isomerized stream to the para-xylene recovery section.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Jeevan S. Abichandani, Jeffrey L. Andrews, Robert G. Tinger, Dennis J. Stanley, George J. Wagner
  • Patent number: 9708233
    Abstract: In a process for producing para-xylene, at least one feed comprising C6+ aromatic hydrocarbons is supplied to a dividing wall distillation column to separate the feed into a C7? aromatic hydrocarbon-containing stream, a C8 aromatic hydrocarbon-containing stream and a C9+ aromatic hydrocarbon-containing stream. At least part of the C8 aromatic hydrocarbon-containing stream is then supplied to a para-xylene recovery unit to recover para-xylene from the C8 aromatic hydrocarbon-containing stream and produce a para-xylene depleted stream. The para-xylene depleted stream is contacted with a xylene isomerization catalyst in a xylene isomerization zone under conditions effective to isomerize xylenes in the para-xylene depleted stream and produce an isomerized stream, which is then at least partially recycled to the para-xylene recovery unit.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Kevin J. Knob, Dennis J. Stanley, Terri S. Vander Pol, Chunshe Cao, Xiaobo Zheng, Thierry LeFlour, Jacques Rault, Stephane Claudel, Isabell Prevost, Jerome Pigourier, Celia Fernandez
  • Publication number: 20170081259
    Abstract: A process and catalyst system is disclosed for producing para-xylene from a C8 hydrocarbon mixture comprising ethylbenzene and at least one xylene isomer other than para-xylene. The process modifies the conventional process by operating with a higher weight hourly space velocity, lower pressure and lower hydrogen partial pressure, which allows production of on-specification benzene product without penalty with respect to ethylbenzene conversion, para-xylene approach to equilibrium or xylene losses. The catalyst system comprises a first catalyst bed comprising a first zeolite having a constraint index from 1 to 12 and an average crystal size from 0.1 to 1 micron and a platinum hydrogenation component, and a second catalyst bed comprising a second zeolite having a constraint index ranging from 1 to 12 and an average crystal size of less than 0.1 micron and a rhenium hydrogenation component.
    Type: Application
    Filed: July 28, 2016
    Publication date: March 23, 2017
    Inventors: Michel Molinier, Hari Nair, Xiaobo Zheng
  • Publication number: 20170050899
    Abstract: The present invention is an improved process and apparatus for producing para-xylene, particularly with respect to a process that involves the methylation of toluene and/or benzene to selectively produce para-xylene, wherein streams having differing amounts of ethylbenzene are separately treated in the recovery of para-xylene. A first hydrocarbon feed comprising xylenes and ethylbenzene is provided to a first para-xylene adsorption section, and a second hydrocarbon feed comprising xylenes and less EB than the first hydrocarbon feed is provided to a second para-xylene adsorption section. Segregating the feeds with differing ethylbenzene contents increases the overall efficiency of the adsorption of para-xylene by the adsorption units. Efficiency and energy savings may be further improved by subjecting the lower-content ethylbenzene stream to liquid phase isomerization.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 23, 2017
    Inventors: Robert G. Tinger, Dana L. Pilliod, Michel Molinier