Patents by Inventor Michel Sanchez
Michel Sanchez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230241452Abstract: The present disclosure relates to an exercise device comprising a pedal assembly coupled to a braking device. The exercise device comprises a housing, through which a main transverse axle extends and which is arranged at a height of between 120 and 170 mm from the bearing surface on the ground, the main axle being coupled at either side of the housing to a disc-like plate that supports an eccentric transverse axle, the eccentric axles being orientated in a diametrically opposed manner relative to the main transverse axle, each of the eccentric axles being articulated relative to a connection piece with a pedal formed by a plate that is articulated relative to the connection piece by a pivot that is parallel with the longitudinal axis of the plate in order to allow the plate to move between a horizontal active position and a storage position in which it is folded against the vertical face of the housing, the main axle driving a flywheel received in the housing.Type: ApplicationFiled: October 9, 2020Publication date: August 3, 2023Inventors: Vincent Fourdrinier, Jean-Michel Sanchez, Yvan Saumet, Vicent Gnemmi
-
Patent number: 11243190Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: December 5, 2019Date of Patent: February 8, 2022Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10969316Abstract: A measurement apparatus and method for in-situ quantitative texture measurement of a food snack. The apparatus includes an acoustic capturing device and a data processing unit. The physical interaction in the mouth with saliva, when a human being eats/drinks a food snack, sends pressure waves that propagate through the ear bone and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that smoothens, transforms and filters the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Another method includes a food snack fingerprinting using an in-situ quantitative food property measurement.Type: GrantFiled: March 3, 2017Date of Patent: April 6, 2021Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Enrique Michel-Sanchez, Shahmeer Ali Mirza
-
Patent number: 10942153Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: July 25, 2018Date of Patent: March 9, 2021Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10791753Abstract: A feedback and feedforward as well as a statistical predictive control system and method for continuously controlling texture of a food snack in a manufacturing process. The feedback system includes a quantitative texture measuring tool that is positioned downstream of a food processing unit. The texture measuring tool continuously measures a texture attribute of food snack from the food processing unit and feeds back texture attribute information to a controller that controls input parameters to food processing unit such that the texture attribute of a resultant food snack falls within an acceptable limit. The texture measuring tool comprises an excitation tool that strikes the food snack and produces an acoustic signal that is processed by a data processing unit. The data processing unit identifies relevant frequencies in the acoustic signal and quantitatively measures a texture attribute based on a correlated model that includes the relevant frequencies.Type: GrantFiled: April 7, 2016Date of Patent: October 6, 2020Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza
-
Publication number: 20200110058Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: December 5, 2019Publication date: April 9, 2020Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Patent number: 10605787Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: September 17, 2018Date of Patent: March 31, 2020Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10598648Abstract: A non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an ultrasound excitation device, an acoustic capturing device, an ultrasound capturing device and a data processing unit. The laser generating tool and the ultrasound excitation tool direct energy towards a food snack placed on a surface and produce an acoustic signal and an ultrasound signal. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal and ultrasound signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: September 21, 2017Date of Patent: March 24, 2020Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Publication number: 20190017972Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: September 17, 2018Publication date: January 17, 2019Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Patent number: 10141227Abstract: Methods and systems for achieving semiconductor-based circuits or systems having multiple components with one or more matched or similar characteristics or features are disclosed herein. In one example embodiment, a system includes a processing device that includes first, second, and third circuitry. The first circuitry is configured to generate control signals that at least indirectly cause a pick and place head mechanism to attempt to pick up and place at least some of first and second dice. The second circuitry is configured to assess whether attempts to implement one or more of first and second dice should be skipped based upon wafer map information. Further, the third circuitry is configured to determine whether a second position of a first one of the second dice is sufficiently proximate to a first position so that it would be appropriate to implement the first one of the second dice.Type: GrantFiled: July 14, 2017Date of Patent: November 27, 2018Assignee: NXP USA, INC.Inventors: Jose Luis Suarez, Gabriela Michel Sanchez, Audel Sanchez, Michele Lynn Miera, Flavio Hernandez Rodriguez
-
Publication number: 20180328894Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: July 25, 2018Publication date: November 15, 2018Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Patent number: 10107785Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: March 15, 2017Date of Patent: October 23, 2018Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10101143Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: December 15, 2016Date of Patent: October 16, 2018Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10070661Abstract: A feedback and feedforward as well as a statistical predictive control system and method for continuously controlling texture of a food snack in a manufacturing process. The feedback system includes a quantitative texture measuring tool that is positioned downstream of a food processing unit. The texture measuring tool continuously measures a texture attribute of food snack from the food processing unit and feeds back texture attribute information to a controller that controls input parameters to food processing unit such that the texture attribute of a resultant food snack falls within an acceptable limit. The texture measuring tool comprises an excitation tool that strikes the food snack and produces an acoustic signal that is processed by a data processing unit. The data processing unit identifies relevant frequencies in the acoustic signal and quantitatively measures a texture attribute based on a correlated model that includes the relevant frequencies.Type: GrantFiled: September 24, 2015Date of Patent: September 11, 2018Assignee: FRITO-LAY NORTH AMERICA, INC.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Patent number: 10048232Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: GrantFiled: December 15, 2016Date of Patent: August 14, 2018Assignee: Frito-Lay North America, Inc.Inventors: Ou Bai, Wilfred Marcellien Bourg, Jr., Scott Fagan, Enrique Michel-Sanchez, Shahmeer Ali Mirza, Scott G. Richardson, Chen C. Shao
-
Publication number: 20180011069Abstract: A non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an ultrasound excitation device, an acoustic capturing device, an ultrasound capturing device and a data processing unit. The laser generating tool and the ultrasound excitation tool direct energy towards a food snack placed on a surface and produce an acoustic signal and an ultrasound signal. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal and ultrasound signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: September 21, 2017Publication date: January 11, 2018Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Publication number: 20170184551Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a liquid. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a surface of a liquid contained in a container and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Textures of liquids are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: March 15, 2017Publication date: June 29, 2017Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Publication number: 20170176309Abstract: A measurement apparatus and method for in-situ quantitative texture measurement of a food snack. The apparatus includes an acoustic capturing device and a data processing unit. The physical interaction in the mouth with saliva, when a human being eats/drinks a food snack, sends pressure waves that propagate through the ear bone and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that smoothens, transforms and filters the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Another method includes a food snack fingerprinting using an in-situ quantitative food property measurement.Type: ApplicationFiled: March 3, 2017Publication date: June 22, 2017Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA
-
Publication number: 20170097222Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: December 15, 2016Publication date: April 6, 2017Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO
-
Publication number: 20170097324Abstract: A photo acoustic non-destructive measurement apparatus and method for quantitatively measuring texture of a food snack is disclosed. The apparatus includes a laser generating tool, an acoustic capturing device, and a data processing unit. The laser generating tool directs a laser towards a food snack placed on a surface and creates pressure waves that propagate through the air and produce an acoustic signal. The acoustic capturing device records and forwards the signal to a data processing unit. The data processing unit further comprises a digital signal processing module that processes the received acoustic signal. A statistical processing module further filters the acoustic signal from the data processing unit and generates a quantitative acoustic model for texture attributes such as hardness and fracturability. The quantitative model is correlated with a qualitative texture measurement from a descriptive expert panel. Texture of food snacks are quantitatively measured with the quantitative acoustic model.Type: ApplicationFiled: December 15, 2016Publication date: April 6, 2017Inventors: Ou BAI, Wilfred Marcellien BOURG, JR., Scott FAGAN, Enrique MICHEL-SANCHEZ, Shahmeer Ali MIRZA, Scott G. RICHARDSON, Chen C. SHAO