Patents by Inventor Michel Weibel
Michel Weibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150226100Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: ApplicationFiled: April 24, 2015Publication date: August 13, 2015Inventors: Brigitte BANDL-KONRAD, Andreas HERTZBERG, Bernd KRUTZSCH, Arno NOLTE, Markus PAULE, Stefan RENFFTLEN, Norbert WALDBUESSER, Michel WEIBEL, Guenther WENNINGER, Rolf WUNSCH
-
Patent number: 9057307Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: GrantFiled: September 14, 2012Date of Patent: June 16, 2015Assignee: Daimler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Patent number: 8297046Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: GrantFiled: September 9, 2010Date of Patent: October 30, 2012Assignee: Daimler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Patent number: 8181445Abstract: The exhaust gas aftertreatment device according to the invention having a reforming unit for generating hydrogen by steam reforming, partial oxidation of hydrocarbons and/or mixed forms thereof is distinguished by the fact that the reforming unit is arranged directly in the main exhaust gas stream from an internal combustion engine. The steam and residual oxygen which are required for the reforming preferably originate from the exhaust gas. The step of providing the required reducing agents consists in briefly switching the internal combustion engine, which is predominantly operated in lean-burn mode and the exhaust gas from which is undergoing the aftertreatment, to rich-burn mode, allowing reforming by means of the reforming reactor according to the invention using the hydrocarbons that are present in the exhaust gas.Type: GrantFiled: February 25, 2004Date of Patent: May 22, 2012Assignee: Daimler AGInventors: Frank Duvinage, Berthold Keppeler, Bernd Krutzsch, Markus Paule, Michel Weibel
-
Publication number: 20110005204Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: ApplicationFiled: September 9, 2010Publication date: January 13, 2011Applicant: Daimler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Patent number: 7814747Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: GrantFiled: March 23, 2007Date of Patent: October 19, 2010Assignee: Daimler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Publication number: 20070175208Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: ApplicationFiled: March 23, 2007Publication date: August 2, 2007Applicant: DAIMLERCHRYSLER AGInventors: Brigitte BANDL-KONRAD, Andreas HERTZBERG, Bernd KRUTZSCH, Arno NOLTE, Markus PAULE, Stefan RENFFTLEN, Norbert WALDBUESSER, Michel WEIBEL, Guenter WENNINGER, Rolf WUNSCH
-
Patent number: 7210288Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: GrantFiled: December 16, 2003Date of Patent: May 1, 2007Assignee: DaimlerChrysler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Patent number: 7174705Abstract: An internal combustion engine includes an exhaust-gas aftertreatment device, and an operating method is for operating the internal combustion engine. The internal combustion engine is operable with a lean mixture and a rich mixture, the internal combustion engine having an exhaust-gas aftertreatment device, which includes a nitrogen oxide storage catalytic converter and a particle filter. When lean exhaust gas flows through the nitrogen oxide storage catalytic converter, it removes nitrogen oxides from the exhaust gas by storing them, and, when reducing exhaust gas flows through the nitrogen oxide storage catalytic converter, it produces ammonia through reduction of stored and/or supplied nitrogen oxides and releases it to the exhaust gas. Downstream from the nitrogen oxide storage catalytic converter, the exhaust-gas aftertreatment device includes a SCR catalytic converter, which reduces nitrogen oxides contained in the exhaust gas, using ammonia produced by the nitrogen oxide storage catalytic converter.Type: GrantFiled: January 9, 2004Date of Patent: February 13, 2007Assignee: DaimlerChrysler AGInventors: Klaus Binder, Josef Günther, Andreas Hertzberg, Brigitte Konrad, Bernd Krutzsch, Heinz-Jost Ölschlegel, Stefan Renfftlen, Dirk Voigtländer, Michel Weibel, Marko Weirich, Günter Wenninger, Rolf Wunsch
-
Publication number: 20070028601Abstract: The exhaust gas aftertreatment device according to the invention having a reforming unit for generating hydrogen by steam reforming, partial oxidation of hydrocarbons and/or mixed forms thereof is distinguished by the fact that the reforming unit is arranged directly in the main exhaust gas stream from an internal combustion engine. The steam and residual oxygen which are required for the reforming preferably originate from the exhaust gas. The step of providing the required reducing agents consists in briefly switching the internal combustion engine, which is predominantly operated in lean-burn mode and the exhaust gas from which is undergoing the aftertreatment, to rich-burn mode, allowing reforming by means of the reforming reactor according to the invention using the hydrocarbons that are present in the exhaust gas.Type: ApplicationFiled: February 25, 2004Publication date: February 8, 2007Applicant: Daimlerchrysler AGInventors: Frank Duvinage, Berthold Keppeler, Bernd Krutzsch, Markus Paule, Michel Weibel
-
Publication number: 20060153761Abstract: An exhaust gas aftertreatment installment and associated exchaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.Type: ApplicationFiled: December 16, 2003Publication date: July 13, 2006Applicant: DaimlerChrysler AGInventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
-
Patent number: 6872365Abstract: An exhaust-gas cleaning system for cleaning exhaust gas from a combustion source so as to remove at least nitrogen oxides contained therein is provided. An ammonia-generation catalytic converter for generating ammonia uses constituents of at least some of the exhaust gas emitted from the combustion source during ammonia-generation operating phases. A downstream nitrogen oxide reduction catalytic converter is provided for reducing nitrogen oxides which are contained in the exhaust gas emitted from the combustion source using the ammonia generated as the reducing agent. According to the invention, a plasma generator for using plasma technology to generate reactive particles, which promote the ammonia-generation reaction, from constituents of the exhaust gas fed to the ammonia-generation catalytic converter during the ammonia-generation operating phases is connected upstream of the ammonia-generation catalytic converter.Type: GrantFiled: March 24, 2000Date of Patent: March 29, 2005Assignee: DaimlerChrysler AGInventors: Walter Boegner, Martin Hartweg, Brigitte Konrad, Bernd Krutzsch, Michel Weibel, Guenter Wenninger
-
Patent number: 6823667Abstract: In a method for burning deposited soot particles in a particle filter on an exhaust device of a diesel engine, first of all, in a known way, a catalytic converter produces NO2 from exhaust gas. This NO2 reduces the ignition temperature of soot to such an extent that it burns at normal exhaust-gas temperature. Furthermore, there is provision to add fuel additive, which likewise allows the ignition temperature of the soot to be reduced. The sulphur content in the fuel is determined, and either generation of NO2 or the addition of additive is used as a function of this measurement. This preferably takes place automatically. To determine the sulphur content, it is possible, for example, to use a sulphur sensor in the tank.Type: GrantFiled: February 10, 2003Date of Patent: November 30, 2004Assignee: DaimlerChrysler AGInventors: Tillmann Braun, Oliver Ebelsheiser, Bernd Krutzsch, Klaus-Juergen Marquardt, Michel Weibel, Guenter Wenninger
-
Patent number: 6820415Abstract: In a method for operating an internal combustion engine using exhaust gas purification system, and internal combustion engine, the method for operating an internal combustion engine with exhaust gas purification system, in which a rich mode of the internal combustion engine with a rich exhaust gas composition and a lean mode of the internal combustion engine with a lean exhaust gas composition are set alternately, and by the exhaust gas purification system with a rich exhaust gas composition ammonia is synthesized and stored and with a lean exhaust gas composition nitrogen oxides are reduced to form nitrogen by means of the stored ammonia.Type: GrantFiled: January 6, 2003Date of Patent: November 23, 2004Assignee: DaimlerChrysler AGInventors: Oliver Abet, Holger Adler, Brigitte Konrad, Thomas Liebscher, Michel Weibel
-
Patent number: 6766642Abstract: An exhaust-gas aftertreatment device with a nitrogen oxide storage catalytic converter for an internal combustion engine, and a method for operating an exhaust-gas aftertreatment device which is assigned to an internal combustion engine and has a nitrogen oxide storage catalytic converter. An SCR catalytic converter is arranged in the exhaust-gas aftertreatment device, it being possible for the exhaust gas which emerges from the nitrogen oxide storage catalytic converter to be fed to the SCR catalytic converter when the internal combustion engine is in a desulphating operating mode with a reducing exhaust-gas composition, in order for H2S which is formed during the desulphating to be removed.Type: GrantFiled: June 26, 2002Date of Patent: July 27, 2004Assignee: DaimlerChrysler AGInventors: Klaus Binder, Josef Günther, Andreas Hertzberg, Brigitte Konrad, Bernd Krutzsch, Heinz-Jost Ölschlegel, Stefan Renfftlen, Dirk Voigtländer, Michel Weibel, Marko Weirich, Günter Wenninger, Rolf Wunsch
-
Publication number: 20040139737Abstract: An exhaust-gas aftertreatment device with a nitrogen oxide storage catalytic converter for an internal combustion engine, and a method for operating an exhaust-gas aftertreatment device which is assigned to an internal combustion engine and has a nitrogen oxide storage catalytic converter. An SCR catalytic converter is arranged in the exhaust-gas aftertreatment device, it being possible for the exhaust gas which emerges from the nitrogen oxide storage catalytic converter to be fed to the SCR catalytic converter when the internal combustion engine is in a desulphating operating mode with a reducing exhaust-gas composition, in order for H2S which is formed during the desulphating to be removed.Type: ApplicationFiled: January 9, 2004Publication date: July 22, 2004Inventors: Klaus Binder, Josef Gunther, Andreas Hertzberg, Brigitte Konrad, Bernd Krutzsch, Heinz-Jost Olschlegel, Stefan Renfftlen, Dirk Voigtlander, Michel Weibel, Marko Weirich, Gunter Wenninger, Rolf Wunsch
-
Publication number: 20030170577Abstract: In a method for burning deposited soot particles in a particle filter on an exhaust device of a diesel engine, first of all, in a known way, a catalytic converter produces NO2 from exhaust gas. This NO2 reduces the ignition temperature of soot to such an extent that it burns at normal exhaust-gas temperature. Furthermore, there is provision to add fuel additive, which likewise allows the ignition temperature of the soot to be reduced. The sulphur content in the fuel is determined, and either generation of NO2 or the addition of additive is used as a function of this measurement. This preferably takes place automatically. To determine the sulphur content, it is possible, for example, to use a sulphur sensor in the tank.Type: ApplicationFiled: February 10, 2003Publication date: September 11, 2003Inventors: Tillmann Braun, Oliver Ebelsheiser, Bernd Krutzsch, Klaus-Juergen Marquardt, Michel Weibel, Guenter Wenninger
-
Publication number: 20030136115Abstract: In a method for operating an internal combustion engine using exhaust gas purification system, and internal combustion engine, the method for operating an internal combustion engine with exhaust gas purification system, in which a rich mode of the internal combustion engine with a rich exhaust gas composition and a lean mode of the internal combustion engine with a lean exhaust gas composition are set alternately, and by the exhaust gas purification system with a rich exhaust gas composition ammonia is synthesized and stored and with a lean exhaust gas composition nitrogen oxides are reduced to form nitrogen by means of the stored ammonia.Type: ApplicationFiled: January 6, 2003Publication date: July 24, 2003Inventors: Oliver Abet, Holger Adler, Brigitte Konrad, Thomas Liebscher, Michel Weibel
-
Patent number: 6574955Abstract: A method for the desulfurization of a nitrogen oxide adsorber of an exhaust gas purification device for a combustion system employs desulfurization phases that are intermittently implemented by a desulfurization control unit. During each desulfurization phase, the carbon monoxide concentration and/or the lambda value of the exhaust gas stream exiting the nitrogen oxide adsorber is recorded. A localized maximum that appears in the recorded course of the carbon monoxide concentration over time, or a downward slope that appears in the established course of the lambda value over time, falling from a temporary plateau value, is employed as criterion for terminating the desulfurization phase. The method may be used, for example, in exhaust gas purification devices in primarily lean-burning vehicle combustion engines.Type: GrantFiled: December 21, 2001Date of Patent: June 10, 2003Assignee: DaimlerChrysler AGInventors: Doris Schröder, Dirk Voigtländer, Michel Weibel, Günter Wenninger, Walter Boegner, Kirsten Hardenberg, Andreas Hertzberg, Günter Karl, Bernd Krutzsch, Renate Marx, Norbert Ruzicka, Christof Schön
-
Publication number: 20030056499Abstract: An exhaust-gas aftertreatment device with a nitrogen oxide storage catalytic converter for an internal combustion engine, and a method for operating an exhaust-gas aftertreatment device which is assigned to an internal combustion engine and has a nitrogen oxide storage catalytic converter. An SCR catalytic converter is arranged in the exhaust-gas aftertreatment device, it being possible for the exhaust gas which emerges from the nitrogen oxide storage catalytic converter to be fed to the SCR catalytic converter when the internal combustion engine is in a desulphating operating mode with a reducing exhaust-gas composition, in order for H2S which is formed during the desulphating to be removed.Type: ApplicationFiled: June 26, 2002Publication date: March 27, 2003Inventors: Klaus Binder, Josef Gunther, Andreas Hertzberg, Brigitte Konrad, Bernd Krutzsch, Heinz-Jost Olschlegel, Stefan Renfftlen, Dirk Voigtlander, Michel Weibel, Marko Weirich, Gunter Wenninger, Rolf Wunsch