Patents by Inventor Michele Bozzolo
Michele Bozzolo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230383910Abstract: A gas delivery system intended for use in delivering hydrogen gas from a cryogenic liquid hydrogen storage tank is provided. The gas delivery system has: a cryogenic liquid storage tank; an evaporator; a pressurisable gas reservoir; a valve sub-system including: a multi-outlet valve arrangement having a first valve inlet, a first valve outlet and a second valve outlet; and a multi-inlet valve arrangement having a second valve inlet, a third valve inlet and a third valve outlet; a delivery line connected to the third valve outlet; an evaporator feed line connecting the storage tank and the evaporator inlet; an evaporator dispensing line connecting the evaporator and the first valve inlet; a reservoir feed line connecting the first valve outlet and the reservoir; a reservoir dispensing line connecting the reservoir and the second valve inlet; and a reservoir bypass line connecting the second valve outlet and the third valve inlet.Type: ApplicationFiled: May 1, 2023Publication date: November 30, 2023Applicants: ROLLS-ROYCE PLC, ROLLS-ROYCE SOLUTIONS ITALIA SRLInventors: Michele BOZZOLO, Philip D BUTLER
-
Patent number: 10763526Abstract: Various embodiments of the present disclosure provide a fuel cell system configured to modulate the flow of oxidant through the fuel cell system to maintain a desired temperature at the fuel cell stack. The fuel cell system is configured to control the flow of oxidant to maintain the desired temperature in the fuel cell stack based on temperature measurements of fluid outside of the fuel cell stack.Type: GrantFiled: November 13, 2017Date of Patent: September 1, 2020Assignee: LG Electronics, Inc.Inventors: Michele Bozzolo, Francesco Caratozzolo, David Silveira Erel, Alberto Traverso
-
Patent number: 10693158Abstract: A fuel cell system and corresponding methods are provided. The fuel cell system includes a fuel cell stack configured for in-block reforming, as well as a pre-reformer. The fuel cell stack may include a plurality of fuel cells. The fuel cell stack may also include a fuel supply manifold, a fuel exhaust manifold, an oxidant supply manifold, and an oxidant exhaust manifold. The fuel supply manifold may be configured to receive fuel, and to supply the fuel to the fuel cell stack for in-block reforming. The fuel exhaust manifold may be configured to expel fuel exhaust from the fuel cell stack. The oxidant supply manifold may be configured to receive an oxidant and to supply the oxidant to the fuel cell stack for in-block reforming. The oxidant exhaust manifold may be configured to expel oxidant exhaust from the fuel cell stack.Type: GrantFiled: October 26, 2017Date of Patent: June 23, 2020Assignee: LG Electronics, Inc.Inventors: Michele Bozzolo, Robert Hay Cunningham, Gary John Saunders
-
Patent number: 10680261Abstract: A fuel cell system and corresponding methods are provided. The fuel cell system includes a fuel cell stack configured for in-block reforming, as well as a pre-reformer. The fuel cell stack may include a plurality of fuel cells. The fuel cell stack may also include a fuel supply manifold, a fuel exhaust manifold, an oxidant supply manifold, and an oxidant exhaust manifold. The fuel supply manifold may be configured to receive fuel, and to supply the fuel to the fuel cell stack for in-block reforming. The fuel exhaust manifold may be configured to expel fuel exhaust from the fuel cell stack. The oxidant supply manifold may be configured to receive an oxidant and to supply the oxidant to the fuel cell stack for in-block reforming. The oxidant exhaust manifold may be configured to expel oxidant exhaust from the fuel cell stack.Type: GrantFiled: October 26, 2017Date of Patent: June 9, 2020Assignee: LG Electronics, Inc.Inventors: Michele Bozzolo, Robert Hay Cunningham, Gary John Saunders
-
Patent number: 10622650Abstract: Various embodiments of the present disclosure provide a fuel cell system configured to modulate the flow of oxidant through the fuel cell system to maintain a desired temperature at the fuel cell stack. The fuel cell system is configured to control the flow of oxidant to maintain the desired temperature in the fuel cell stack based on temperature measurements of fluid outside of the fuel cell stack.Type: GrantFiled: November 13, 2017Date of Patent: April 14, 2020Assignee: LG FUEL CELL SYSTEMS INC.Inventors: Michele Bozzolo, Francesco Caratozzolo, David Silveira Erel, Alberto Traverso
-
Patent number: 10340534Abstract: A fuel cell system having at least one fuel cell and a cathode loop for recycling a portion of an unused oxidant from the fuel cell for reuse in the same fuel cell is presented. The cathode loop may comprise an oxidant inlet manifold in the fuel cell configured to supply oxidant to the fuel cell, an oxidant exhaust manifold in the fuel cell configured to receive unused oxidant from said fuel cells, and a cathode ejector configured to receive oxidant from an oxidant source and the oxidant exhaust manifold and to supply oxidant to the oxidant inlet manifold, wherein a portion of said unused oxidant is supplied directly to said oxidant inlet manifold from said oxidant exhaust manifold via said cathode ejector.Type: GrantFiled: November 2, 2016Date of Patent: July 2, 2019Assignee: LG FUEL CELL SYSTEMS INC.Inventor: Michele Bozzolo
-
Patent number: 10333160Abstract: A fuel cell system having a cathode, anode and auxiliary loop is provided. The anode loop may be configured to deliver reformed and unreformed fuel to the fuel cells. Unreformed fuel may be provided to the fuel cells by bypassing a portion of the fuel around a reformer. The unreformed fuel may be reformed in the fuel cell block. The cathode loop may direct a portion of oxidant exhausted from said fuel cells back to the fuel cell through a cathode ejector. The ejector may be supplied with pressurized oxidant that may be heated prior to entering the cathode ejector. The auxiliary loop may combust unused fuel and oxidant to provide the heat transferred to the oxidant prior to the oxidant entering the cathode loop.Type: GrantFiled: November 1, 2017Date of Patent: June 25, 2019Assignee: LG FUELL CELL SYSTEMS INC.Inventors: Robert Cunningham, Eric Dean, Gerry Agnew, Michele Bozzolo
-
Publication number: 20190148749Abstract: Various embodiments of the present disclosure provide a fuel cell system configured to modulate the flow of oxidant through the fuel cell system to maintain a desired temperature at the fuel cell stack. The fuel cell system is configured to control the flow of oxidant to maintain the desired temperature in the fuel cell stack based on temperature measurements of fluid outside of the fuel cell stack.Type: ApplicationFiled: November 13, 2017Publication date: May 16, 2019Applicant: LG Fuel Cell Systems Inc.Inventors: Michele Bozzolo, Francesco Caratozzolo, David Silveira Erel, Alberto Traverso
-
Publication number: 20190148748Abstract: Various embodiments of the present disclosure provide a fuel cell system configured to modulate the flow of oxidant through the fuel cell system to maintain a desired temperature at the fuel cell stack. The fuel cell system is configured to control the flow of oxidant to maintain the desired temperature in the fuel cell stack based on temperature measurements of fluid outside of the fuel cell stack.Type: ApplicationFiled: November 13, 2017Publication date: May 16, 2019Applicant: LG Fuel Cell Systems Inc.Inventors: Michele Bozzolo, Francesco Caratozzolo, David Silveira Erel, Alberto Traverso
-
Publication number: 20190148752Abstract: Various embodiments of the present disclosure provide a fuel cell system configured to modulate the flow of oxidant through the fuel cell system to maintain a desired temperature at the fuel cell stack. The fuel cell system is configured to control the flow of oxidant to maintain the desired temperature in the fuel cell stack based on temperature measurements of fluid outside of the fuel cell stack.Type: ApplicationFiled: November 13, 2017Publication date: May 16, 2019Applicant: LG Fuel Cell Systems Inc.Inventors: Michele Bozzolo, Francesco Caratozzolo, David Silveira Erel, Alberto Traverso
-
Publication number: 20190131641Abstract: A fuel cell system and corresponding methods are provided. The fuel cell system includes a fuel cell stack configured for in-block reforming, as well as a pre-reformer. The fuel cell stack may include a plurality of fuel cells. The fuel cell stack may also include a fuel supply manifold, a fuel exhaust manifold, an oxidant supply manifold, and an oxidant exhaust manifold. The fuel supply manifold may be configured to receive fuel, and to supply the fuel to the fuel cell stack for in-block reforming. The fuel exhaust manifold may be configured to expel fuel exhaust from the fuel cell stack. The oxidant supply manifold may be configured to receive an oxidant and to supply the oxidant to the fuel cell stack for in-block reforming. The oxidant exhaust manifold may be configured to expel oxidant exhaust from the fuel cell stack.Type: ApplicationFiled: October 26, 2017Publication date: May 2, 2019Applicant: LG Fuel Cell Systems Inc.Inventors: Michele Bozzolo, Robert Hay Cunningham, Gary John Saunders
-
Publication number: 20190131640Abstract: A fuel cell system and corresponding methods are provided. The fuel cell system includes a fuel cell stack configured for in-block reforming, as well as a pre-reformer. The fuel cell stack may include a plurality of fuel cells. The fuel cell stack may also include a fuel supply manifold, a fuel exhaust manifold, an oxidant supply manifold, and an oxidant exhaust manifold. The fuel supply manifold may be configured to receive fuel, and to supply the fuel to the fuel cell stack for in-block reforming. The fuel exhaust manifold may be configured to expel fuel exhaust from the fuel cell stack. The oxidant supply manifold may be configured to receive an oxidant and to supply the oxidant to the fuel cell stack for in-block reforming. The oxidant exhaust manifold may be configured to expel oxidant exhaust from the fuel cell stack.Type: ApplicationFiled: October 26, 2017Publication date: May 2, 2019Applicant: LG Fuel Cell Systems Inc.Inventors: Michele Bozzolo, Robert Hay Cunningham, Gary John Saunders
-
Publication number: 20180151895Abstract: This invention relates to a fuel cell system with an improved arrangement for mixing fuel and oxidant. The present invention relates to a high temperature fuel cell system, in particular to a solid oxide fuel cell system. An ejector is provided with three inlets for a portion of unused oxidant, a portion of unused fuel and a portion of primary oxidant. The ejector mixes and entrains the unused oxidant, a portion of unused fuel and a portion of primary oxidant so rapidly, the time the mixture resides in the ejector is less than the time required for the mixture to ignite.Type: ApplicationFiled: July 3, 2015Publication date: May 31, 2018Inventors: Philip Butler, Michele Bozzolo, Eric Dean, Peter McNeely, Gary Saunders
-
Patent number: 9972855Abstract: A solid oxide fuel cell system (10) comprises a solid oxide fuel cell stack (12) and an electrochemical device (14). The solid oxide fuel cell stack (12) comprises at least one solid oxide fuel cell (16) and each solid oxide fuel cell (16) comprises an electrolyte (18), an anode (20) and a cathode (22). An oxidant supply (24) is arranged to supply oxidant to the cathode (22) of the at least one solid oxide fuel cell (16) and a fuel supply (26) is arranged to supply fuel to the anode (20) of the at least one solid oxide fuel cell (16). The electrochemical device (14) comprises an electrolyte (34), an anode (36) and a cathode (38). Means (28, 50, 52) to supply a portion of the unused fuel from the anode (20) of the at least one solid oxide fuel cell (16) to the anode (36) of the electrochemical device (14), means (32, 50, 58) to supply a portion of the unused fuel from the anode (20) of the at least one solid oxide fuel cell (16) to the cathode (38) of the electrochemical device (14).Type: GrantFiled: November 10, 2011Date of Patent: May 15, 2018Assignee: LG FUEL CELL SYSTEMS INC.Inventors: Michele Bozzolo, Gerald Daniel Agnew
-
Publication number: 20180123151Abstract: A fuel cell system having a cathode, anode and auxiliary loop is provided. The anode loop may be configured to deliver reformed and unreformed fuel to the fuel cells. Unreformed fuel may be provided to the fuel cells by bypassing a portion of the fuel around a reformer. The unreformed fuel may be reformed in the fuel cell block. The cathode loop may direct a portion of oxidant exhausted from said fuel cells back to the fuel cell through a cathode ejector. The ejector may be supplied with pressurized oxidant that may be heated prior to entering the cathode ejector. The auxiliary loop may combust unused fuel and oxidant to provide the heat transferred to the oxidant prior to the oxidant entering the cathode loop.Type: ApplicationFiled: November 1, 2017Publication date: May 3, 2018Applicant: LG Fuel Cell Systems Inc.Inventors: Robert Cunningham, Eric Dean, Gerry Agnew, Michele Bozzolo
-
Publication number: 20180123150Abstract: A fuel cell system having at least one fuel cell and a cathode loop for recycling a portion of an unused oxidant from the fuel cell for reuse in the same fuel cell is presented. The cathode loop may comprise an oxidant inlet manifold in the fuel cell configured to supply oxidant to the fuel cell, an oxidant exhaust manifold in the fuel cell configured to receive unused oxidant from said fuel cells, and a cathode ejector configured to receive oxidant from an oxidant source and the oxidant exhaust manifold and to supply oxidant to the oxidant inlet manifold, wherein a portion of said unused oxidant is supplied directly to said oxidant inlet manifold from said oxidant exhaust manifold via said cathode ejector.Type: ApplicationFiled: November 2, 2016Publication date: May 3, 2018Applicant: LG Fuel Cell Systems Inc.Inventor: Michele Bozzolo
-
Publication number: 20180034093Abstract: A fuel cell unit with a plurality of fuel cells defining a longitudinal axis and a main flow direction coaxial to the longitudinal axis. Fuel cell inlets and fuel cell outlets are arranged at opposite ends of the fuel cell unit and in line with the main flow direction. Also, a component comprising first fluid conduits arranged parallel to the main flow direction, the first fluid conduits comprising first fluid inlets and first fluid outlets arranged at opposite ends of the component and in line with the main flow direction. The component is arranged adjacent the fuel cell unit such that at least one of the first fluid inlets and the first fluid outlets of the component are arranged adjacent at least one of the fuel cell outlets and the fuel cell inlets such that a fluid flow may flow substantially parallel to the longitudinal axis of the apparatus in the first fluid conduits of the component and in the fuel cell unit and when passing from the component to the fuel cell unit or vice versa.Type: ApplicationFiled: October 11, 2017Publication date: February 1, 2018Applicant: LG Fuel Cell Systems Inc.Inventors: Yves De Vos, Jean-Paul Hubert Janssens, Michele Bozzolo, Robert Cunningham, Eric Dean
-
Publication number: 20180019487Abstract: There is disclosed a method and apparatus for controlling an internal temperature of a fuel cell system. The method and system includes measuring a burner temperature of the high temperature fuel cell system comprising a fuel cell stack and a burner, the fuel cell stack comprising at least one fuel cell. The method further includes comparing the measured burner temperature with a predetermined burner temperature set point to identify a burner temperature difference between the measured burner temperature and the predetermined burner temperature set point and controlling an amount of oxidant supplied to the burner to decrease or increase the amount of oxidant supplied to the burner to thereby reduce the burner temperature difference and control a fuel cell stack inlet temperature.Type: ApplicationFiled: January 26, 2016Publication date: January 18, 2018Inventors: Michele BOZZOLO, Alberto TRAVERSO, Adam PIERCE
-
Patent number: 9666885Abstract: A solid oxide fuel cell system (10) comprises a solid oxide fuel cell stack (12) and a gas turbine engine (14). The solid oxide fuel cell stack (12) comprises a plurality of solid oxide fuel cells (16). The gas turbine engine (14) comprises a compressor (24) and a turbine (26). The compressor (24) supplies oxidant to the cathodes (22) of the fuel cells (16) via an oxidant ejector (60) and the oxidant ejector (60) supplies a portion of the unused oxidant from the cathodes (22) of the fuel cells (16) back to the cathodes (22) of the fuel cells (16) with the oxidant from the compressor (24). The fuel cell system (10) further comprises an additional compressor (64), an additional turbine (66), a cooler (70) and a recuperator (72). The compressor (24) supplies oxidant via the cooler (70) to the additional compressor (64) and the additional compressor (64) supplies oxidant to the oxidant ejector (60) via the recuperator (72).Type: GrantFiled: August 30, 2012Date of Patent: May 30, 2017Assignee: LG Fuel Cell Systems, Inc.Inventors: Michele Bozzolo, Cristiano Balestrino
-
Patent number: 9570766Abstract: A solid oxide fuel cell system (10) comprises a solid oxide fuel cell stack (12) and a gas turbine engine (14). The solid oxide fuel cell stack (12) comprises a plurality of solid oxide fuel cells (16). The gas turbine engine (14) comprises a compressor (24) and a turbine (26). The compressor (24) supplies oxidant to the cathodes (22) of the fuel cells (16) via an oxidant ejector (60) and the oxidant ejector (60) supplies a portion of the unused oxidant from the cathodes (22) of the fuel cells (16) back to the cathodes (22) of the fuel cells (16) with the oxidant from the compressor (24). The fuel cell system (10) further comprises an additional compressor (64), an electric motor (66) arranged to drive the additional compressor (64), a cooler (70) and a recuperator (72). The compressor (24) supplies oxidant via the cooler (70) to the additional compressor (64) and the additional compressor (64) supplies oxidant to the oxidant ejector (60) via the recuperator (72).Type: GrantFiled: August 30, 2012Date of Patent: February 14, 2017Assignee: LG Fuel Cell Systems, Inc.Inventors: Michele Bozzolo, Cristiano Balestrino