Patents by Inventor Michele Donato

Michele Donato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323485
    Abstract: This disclosure provides a gene expression-based method for determining a virally-infected subject's risk of developing severe symptoms. In some embodiments, the method may comprise measuring the amount of RNA transcripts encoded by at least two genes in a sample of RNA obtained from the subject, to obtain gene expression data; and based on the gene expression data, providing a report indicating the subject's risk of developing severe symptoms. Kits and methods of treatment are also provided.
    Type: Application
    Filed: September 23, 2021
    Publication date: October 12, 2023
    Inventors: Purvesh KHATRI, Aditya Manohar RAO, Michele DONATO, Denis Dermadi BEBEK, Hong ZHENG, Lara JONES, Jia Ying TOH
  • Patent number: 11515000
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 29, 2022
    Assignee: Wayne State University
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato
  • Publication number: 20190304567
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 3, 2019
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato
  • Patent number: 10395756
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 27, 2019
    Assignee: WAYNE STATE UNIVERSITY
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato
  • Patent number: 10248757
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: April 2, 2019
    Assignee: WAYNE STATE UNIVERSITY
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato
  • Publication number: 20180057797
    Abstract: The described invention provides a pharmaceutical composition comprising a therapeutic amount of an educated mononuclear cell product, a process for preparing the educated mononuclear cell product, and a method for treating a disease characterized by lymphocyte autoreactivity. Mononuclear cells from a diseased subject are co-cultured with a viable population of adherent umbilical cord blood stem cells at at least 80% confluence to form an educated mononuclear cell product. A therapeutic amount of the educated mononuclear cell product is returned by infusion intravascularly to the subject. The therapeutic amount is effective to modulate autoreactivity in a T cell compartment of the subject and to reduce symptoms of the disease characterized by lymphocyte autoreactivity.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 1, 2018
    Inventors: Yong Zhao, Robert Korngold, Michele Donato
  • Publication number: 20140172385
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: Wayne State University
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato
  • Publication number: 20140172384
    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: Wayne State University
    Inventors: Sorin Draghici, Zhonghui Xu, Michele Donato