Patents by Inventor Michele Viola Manuel

Michele Viola Manuel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11781206
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: October 10, 2023
    Assignees: University of Florida Research Foundation, Inc., United States Of America As Represented By The Administrator of NASA
    Inventors: Michele Viola Manuel, Charles Robert Fisher, Maria Clara Wright
  • Patent number: 11781199
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: October 10, 2023
    Assignees: University of Florida Research Foundation, Inc., UT-BATTELLE, LLC
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka
  • Publication number: 20230227944
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Application
    Filed: February 23, 2023
    Publication date: July 20, 2023
    Inventors: Michele Viola Manuel, HUNTER B. HENDERSON, ORLANDO RIOS, GERARD M. LUDTKA
  • Patent number: 11618077
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: April 4, 2023
    Assignees: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., UTBATTELLE, LLC
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka
  • Publication number: 20230037160
    Abstract: Embodiments of the present disclosure provide for structures including an alloy of calcium, strontium, and magnesium.
    Type: Application
    Filed: September 27, 2022
    Publication date: February 2, 2023
    Inventors: Michele Viola Manuel, Ida E. Svensson Berglund, Benjamin G. Keselowsky, Malisa Sarntinoranont, Harpreet Singh Brar, Hunter B. Henderson
  • Patent number: 11491257
    Abstract: Embodiments of the present disclosure provide for structures including an alloy of calcium, strontium, and magnesium.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: November 8, 2022
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Ida E. Svensson Berglund, Benjamin G. Keselowsky, Malisa Sarntinoranont, Harpreet Singh Brar, Hunter B. Henderson
  • Publication number: 20220274170
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 1, 2022
    Inventors: MICHELE VIOLA MANUEL, HUNTER B. HENDERSON, ORLANDO RIOS, GERARD M. LUDTKA
  • Publication number: 20220259709
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 18, 2022
    Inventors: MICHELE VIOLA MANUEL, CHARLES ROBERT FISHER, MARIA CLARA WRIGHT
  • Patent number: 11390937
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 19, 2022
    Assignees: University of Florida Research Foundation, Inc., UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Michele Viola Manuel, Charles Robert Fisher, Maria Clara Wright
  • Patent number: 11370027
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 28, 2022
    Assignees: University of Florida Research Foundation, Inc., UT-BATTELLE, LLC
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka
  • Patent number: 11015237
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 25, 2021
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Patent number: 10995392
    Abstract: Embodiments of the present disclosure include compositions that include magnesium and gadolinium or magnesium and one or more metals.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: May 4, 2021
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Kelly A. Jordan
  • Patent number: 10774407
    Abstract: Disclosed herein is a shape memory alloy comprising 45 to 50 atomic percent nickel; and 1 to 30 atomic percent of at least one metalloid selected from the group consisting of germanium, antimony, zinc, gallium, tin, and a combination of one or more of the foregoing metalloids, with the remainder being titanium. The shape memory alloy may further contain aluminum. Disclosed herein too is a method of manufacturing the shape memory alloy.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 15, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Michele Viola Manuel
  • Publication number: 20200263278
    Abstract: Embodiments of the present disclosure include compositions that include magnesium and gadolinium or magnesium and one or more metals.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 20, 2020
    Inventors: Michele Viola MANUEL, Hunter B. Henderson, Kelly A. Jordan
  • Publication number: 20200239988
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Application
    Filed: February 11, 2020
    Publication date: July 30, 2020
    Inventors: MICHELE VIOLA MANUEL, CHARLES ROBERT FISHER, MARIA CLARA WRIGHT
  • Publication number: 20200181743
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Application
    Filed: February 6, 2020
    Publication date: June 11, 2020
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Publication number: 20200179084
    Abstract: Embodiments of the present disclosure provide for structures including bioresorbable alloy membrane (e.g., Mg-, Fe-, Zn-based alloy membranes that include calcium, strontium, and/or manganese), methods of guided bone regeneration, and the like. In an aspect, the membrane can be a periodontal mesh that is biodegradable, bioerodible, and biocompatible and has a life time (e.g., 1-4 months) in line with what is desired for such procedures.
    Type: Application
    Filed: August 14, 2018
    Publication date: June 11, 2020
    Inventors: Michele Viola MANUEL, Ikramuddin AUKHIL
  • Patent number: 10662508
    Abstract: Embodiments of the present disclosure include compositions that include magnesium and gadolinium or magnesium and one or more metals.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 26, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Kelly A. Jordan
  • Patent number: 10654107
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nickel.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: May 19, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka
  • Publication number: 20200101537
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 2, 2020
    Inventors: MICHELE VIOLA MANUEL, HUNTER B. HENDERSON, ORLANDO RIOS, GERARD M. LUDTKA