Patents by Inventor Michelle Becker-Hapak

Michelle Becker-Hapak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8518697
    Abstract: Single chain trimer (SCT) molecules are disclosed, comprising an MHC antigen peptide sequence, a ?2-microglobulin sequence and a full-length MHC class I heavy chain sequence, joined by linker sequences. Further described are nucleic acids encoding single chain trimers. Methods for expansion of antigen-specific T cell populations using single chain trimer molecules are also disclosed. In some configurations, these methods comprise co-culturing, in a first stage, CD8+ T cells from a donor with antigen presenting cells comprising an MHC antigen peptide, and co-culturing, in a second stage, the CD8+ T cells with cells comprising an SCT which has an MHC antigen peptide sequence identical to the sequence of the antigen peptide in the first stage. The methods can provide 10,000-100,000 fold expansion of antigen-specific CD8+ T cells within about 28 days after establishing culture, and can yield over 1 billion antigen-specific CD8+ T cells expanded from an individual donor.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 27, 2013
    Assignee: Washington University
    Inventors: Ted Hansen, Gerald Linette, Michelle Becker-Hapak
  • Publication number: 20100159594
    Abstract: Single chain trimer (SCT) molecules are disclosed, comprising an MHC antigen peptide sequence, a ?2-microglobulin sequence and a full-length MHC class I heavy chain sequence, joined by linker sequences. Further described are nucleic acids encoding single chain trimers. Methods for expansion of antigen-specific T cell populations using single chain trimer molecules are also disclosed. In some configurations, these methods comprise co-culturing, in a first stage, CD8+ T cells from a donor with antigen presenting cells comprising an MHC antigen peptide, and co-culturing, in a second stage, the CD8+ T cells with cells comprising an SCT which has an MHC antigen peptide sequence identical to the sequence of the antigen peptide in the first stage. The methods can provide 10,000-100,000 fold expansion of antigen-specific CD8+ T cells within about 28 days after establishing culture, and can yield over 1 billion antigen-specific CD8+ T cells expanded from an individual donor.
    Type: Application
    Filed: January 21, 2010
    Publication date: June 24, 2010
    Applicant: WASHINGTON UNIVERSITY
    Inventors: Ted Hansen, Gerald Linette, Michelle Becker-Hapak
  • Publication number: 20080219947
    Abstract: Single chain trimer (SCT) molecules are disclosed, comprising an MHC antigen peptide sequence, a ?2-microglobulin sequence and a full-length MHC class I heavy chain sequence, joined by linker sequences. Further described are nucleic acids encoding single chain trimers. Methods for expansion of antigen-specific T cell populations using single chain trimer molecules are also disclosed. In some configurations, these methods comprise co-culturing, in a first stage, CD8+ T cells from a donor with antigen presenting cells comprising an MHC antigen peptide, and co-culturing, in a second stage, the CD8+ T cells with cells comprising an SCT which has an MHC antigen peptide sequence identical to the sequence of the antigen peptide in the first stage. The methods can provide 10,000-100,000 fold expansion of antigen-specific CD8+ T cells within about 28 days after establishing culture, and can yield over 1 billion antigen-specific CD8+ T cells expanded from an individual donor.
    Type: Application
    Filed: April 4, 2006
    Publication date: September 11, 2008
    Inventors: Gerald P. Linette, Ted Hansen, Michelle Becker-Hapak, Yik Yeung Lawrence Yu