Patents by Inventor Michelle S. Bradbury

Michelle S. Bradbury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200289668
    Abstract: Described herein are nanoparticle drug conjugates (NDCs), which, in certain embodiments, comprise a non-toxic, multi-modality, clinically proven silica-based nanoparticle platform with covalently attached drug molecules/moieties. The nanoparticle drug conjugates (NDCs) demonstrate imaging capability and targeting ligands which efficiently clear through the kidneys. Furthermore, the conjugates incorporate therapeutic agents for cancer detection, prevention, and/or treatment.
    Type: Application
    Filed: October 15, 2019
    Publication date: September 17, 2020
    Inventors: Michelle S. Bradbury, Barney Yoo, Ulrich Wiesner, Kai Ma
  • Patent number: 10736972
    Abstract: Described herein is a method of induced cell death via ferroptosis by nanoparticle ingestion. Moreover, the present disclosure describes the administration of high concentrations of ultrasmall nanoparticles at multiple times over the course of treatment in combination with a nutrient-depleted environment, thereby modulating cellular metabolic pathways to induce cell death by the mechanism ferroptosis. Ferroptosis involves iron, reactive oxygen species, and a synchronous mode of cell death execution.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 11, 2020
    Assignees: Memorial Sloan Kettering Cancer Center, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Michael Overholtzer, Howard Scher, Kai Ma
  • Publication number: 20200214571
    Abstract: Presented herein is a multichannel imaging system capable of detecting and distinguishing multiple fluorescent light sources simultaneously. Also described herein are methods of using the system to image disease or cellular abnormalities, e.g., for diagnostic and/or intraoperative purposes.
    Type: Application
    Filed: February 11, 2020
    Publication date: July 9, 2020
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Richard J.C. Meester, Snehal G. Patel, Nadeem R. Abu-Rustum, Mohan Pauliah
  • Publication number: 20200101180
    Abstract: Described herein are nanoprobes comprising ultrasmall aminated and cRGDY-conjugated nanoparticles labeled with Zirconium-89 (89Zr) and methods of their use. The provided compositions are renally clearable and possess suitable blood circulation half-time, high tumor active targeting capability, dominant renal clearance, low liver accumulation, and a high tumor-to-background ratio. The described nanoprobes exhibit great potential as “target-or-clear” tracers to human subjects for systemic targeted imaging (or treatment) of cancer.
    Type: Application
    Filed: May 17, 2018
    Publication date: April 2, 2020
    Inventors: Michelle S. Bradbury, Feng Chen, Ulrich Wiesner, Kai Ma
  • Patent number: 10548997
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Hooisweng Ow, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10548989
    Abstract: Disclosed herein are nanoparticle immunoconjugates useful for therapeutics and/or diagnostics. The immunoconjugates have diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution). In certain embodiments, the conjugates are silica-based nanoparticles with single chain antibody fragments attached thereto.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: February 4, 2020
    Assignees: Memorial Sloan Kettering Cancer Center, Cornell University, The Curators of the University of Missouri
    Inventors: Michelle S. Bradbury, Thomas P. Quinn, Feng Chen, Barney Yoo, Jason Lewis, Ulrich Wiesner, Kai Ma
  • Patent number: 10548998
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10485881
    Abstract: Described herein are nanoparticle drug conjugates (NDCs), which, in certain embodiments, comprise a non-toxic, multi-modality, clinically proven silica-based nanoparticle platform with covalently attached drug molecules/moieties. The nanoparticle drug conjugates (NDCs) demonstrate imaging capability and targeting ligands which efficiently clear through the kidneys. Furthermore, the conjugates incorporate therapeutic agents for cancer detection, prevention, and/or treatment.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 26, 2019
    Assignees: Memorial Sloan Kettering Cancer Center, Cornell University
    Inventors: Michelle S. Bradbury, Barney Yoo, Ulrich Wiesner, Kai Ma
  • Publication number: 20190351077
    Abstract: Described herein are cyclic peptides, nanoparticles bound with cyclic peptides, and methods for using said cyclic peptides and/or said nanoparticles bound with cyclic peptides for intraoperative nerve tissue imaging.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 21, 2019
    Inventors: Michelle S. Bradbury, Barney Yoo, Ulrich Wiesner, Peiming Chen, Kai Ma, Snehal G. Patel, Daniella Karassawa Zanoni
  • Publication number: 20190282712
    Abstract: Described herein are novel conjugates containing an inhibitor (e.g., a PSMA inhibitor, e.g., a gastrin-releasing peptide receptor inhibitor) and metal chelator that are covalently attached to a macromolecule (e.g., a nanoparticle, a polymer, a protein). Such conjugates exhibit distinct properties over the free, unbound inhibitor/chelator construct.
    Type: Application
    Filed: November 29, 2017
    Publication date: September 19, 2019
    Inventors: Michelle S. Bradbury, Thomas P. Quinn, Barney Yoo, Wolfgang Weber, Karim Touijer, Howard Scher, Kai Ma, Ulrich Wiesner
  • Publication number: 20190231903
    Abstract: Described herein are particle-driven radiogenomics systems and methods that can be used to identify imaging features for prediction of intratumoral and interstitial nanoparticle distributions in cancers (e.g., in low grade and/or high-grade brain cancers (e.g., gliomas, e.g., primary gliomas)). In certain embodiments, the systems and methods described herein extract and combine quantitative multi-dimensional data generated from structural, functional, and/or metabolic imaging. In certain embodiments, the combined multidimensional data is linked to intratumoral and interstitial nanoparticle distributions. For example, this linked data can be used to determine quantitative functional-metabolic multimodality particle-based imaging features and to predict treatment efficacy. These techniques provide an improved quantitative ability to measure treatment response and determine tumor progressions compared to traditional size-based imaging methods.
    Type: Application
    Filed: June 28, 2017
    Publication date: August 1, 2019
    Inventors: Michelle S. Bradbury, Cameron Brennan, Mithat Gonen, Mohan Pauliah, Ulrich Wiesner
  • Patent number: 10335501
    Abstract: Described herein are cyclic peptides, nanoparticles bound with cyclic peptides, and methods for using said cyclic peptides and/or said nanoparticles bound with cyclic peptides for intraoperative nerve tissue imaging.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: July 2, 2019
    Assignees: Memorial Sloan Kettering Cancer Center, Cornell University
    Inventors: Michelle S. Bradbury, Barney Yoo, Ulrich Wiesner, Peiming Chen, Kai Ma, Snehal G. Patel, Daniella Karassawa Zanoni
  • Publication number: 20190090750
    Abstract: Described herein is a multiplex platform that uses ultrasmall nanoparticles (e.g., C dots and C? dots) to graphically differentiate specific nerves (e.g., sensory nerves vs. motor nerves) for nerve transplants and other surgeries. Also described herein is a multiplex platform that uses ultrasmall nanoparticles (e.g., C dots and C? dots) to graphically differentiate between different types of lymph nodes and/or lymphatic pathways, e.g., to safely and effectively perform vascularized lymph node transplantation in the treatment of lymphedema. Also described herein is a multiplex platform that uses ultrasmall nanoparticles (e.g., C dots and C? dots) to graphically differentiate parathyroid tissue.
    Type: Application
    Filed: December 15, 2016
    Publication date: March 28, 2019
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Michelle S. BRADBURY, Barney YOO, Ulrich WIESNER, Peiming CHEN, Kai MA, Snehal G. PATEL, Daniella Karassawa ZANONI, Joseph DAYAN, Nadeem R. ABU-RUSTUM
  • Publication number: 20190070310
    Abstract: Described herein are nanoparticle drug conjugates (NDCs), which, in certain embodiments, comprise a non-toxic, multi-modality, clinically proven silica-based nanoparticle platform with covalently attached drug molecules/moieties. The nanoparticle drug conjugates (NDCs) demonstrate imaging capability and targeting ligands which efficiently clear through the kidneys. Furthermore, the conjugates incorporate therapeutic agents for cancer detection, prevention, and/or treatment.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 7, 2019
    Inventors: Michelle S. Bradbury, Barney Yoo, Ulrich Wiesner, Kai Ma
  • Publication number: 20180326103
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: June 15, 2018
    Publication date: November 15, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10039847
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: August 7, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson, Thomas P. Quinn
  • Publication number: 20180169264
    Abstract: Described herein is a method of induced cell death via ferroptosis by nanoparticle ingestion. Moreover, the present disclosure describes the administration of high concentrations of ultrasmall nanoparticles at multiple times over the course of treatment in combination with a nutrient-depleted environment, thereby modulating cellular metabolic pathways to induce cell death by the mechanism ferroptosis. Ferroptosis involves iron, reactive oxygen species, and a synchronous mode of cell death execution.
    Type: Application
    Filed: May 26, 2016
    Publication date: June 21, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Michael Overholtzer, Howard Scher, Kai Ma
  • Patent number: 9999694
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 19, 2018
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Publication number: 20180133342
    Abstract: Disclosed herein are nanoparticle immunoconjugates useful for therapeutics and/or diagnostics. The immunoconjugates have diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution). In certain embodiments, the conjugates are silica-based nanoparticles with single chain antibody fragments attached thereto.
    Type: Application
    Filed: April 7, 2016
    Publication date: May 17, 2018
    Applicants: Memorial Sloan Kettering Cancer Center, The Curators of the University of Missouri, Cornell University, The Curators of the University of Missouri
    Inventors: Barney Yoo, Thomas P. Quinn, Michelle S. Bradbury, Ulrich Wiesner, Jason Lewis, Kai Ma, Feng Chen
  • Publication number: 20180093000
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: September 25, 2017
    Publication date: April 5, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson, Thomas P. Quinn