Patents by Inventor Michiel de Wit

Michiel de Wit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020008589
    Abstract: A digitally-controlled oscillator (DCO) (60), such as may be used in clock generator or clock recovery circuitry in an integrated circuit, is disclosed. The disclosed DCO (60) is a single-stage oscillator including a variable load implemented as a binary-weighted array of switched capacitors (40). Each of capacitors (40) has a plate connected to a common node (X), and a plate that receives a signal corresponding to one bit of a digital control word (DCOCW). The common capacitor node (X) is also connected to the input of a Schmitt trigger (42) that produces the output clock signal (OUTCLK) and a feedback signal that is applied to logic (38, 39) that inverts the common node of the capacitors (40). The switching time at the input of Schmitt trigger (42) depends upon the variable load presented by the array of switched capacitors (40), which is controlled by the digital control word (DCOCW). As a result, the clock signal (OUTCLK) is digitally synthesized by a single stage of the DCO (60).
    Type: Application
    Filed: September 23, 1999
    Publication date: January 24, 2002
    Inventors: PAUL E. LANOMAN, WAI LEE, JOHN W. FATTARUSO, MICHIEL DE WIT
  • Patent number: 6268813
    Abstract: An analog-to-digital converter has a binary weighted capacitor array with one plate of each capacitor connected at an input to a comparator and successive approximation logic circuitry provided for selectively connecting the capacitors to high reference, low reference or analog input signal voltage to develop a digital output in a successive charge redistribution conversion process. An on-board test data generator provides a test input voltage signal for a test mode. The other plate of each capacitor is selectively connected to the high or low reference voltage to charge the capacitors separately according to a prestored or externally supplied test pattern sequence. The digital output obtained from applying the usual sample, hold and charge redistribution process to the internally supplied test signal is compared to an expected digital output for an input signal corresponding to the predetermined test pattern sequence.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: July 31, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel de Wit
  • Patent number: 5629698
    Abstract: An analog-to-digital conversion system (6) is provided which includes an analog-to-digital converter (8) having a first node (NODE 1) and a second node (NODE 2). An automatic offset tracking and correcting circuit (10) is coupled to the first node (NODE 1) and the second node (NODE 2).
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: May 13, 1997
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel De Wit
  • Patent number: 5576708
    Abstract: An analog-to-digital conversion system (6) is provided which includes an analog-to-digital converter (8) having a first node (NODE 1) and a second node (NODE 2). An automatic offset tracking and correcting circuit (10) is coupled to the first node (NODE 1) and the second node (NODE 2).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 19, 1996
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel De Wit
  • Patent number: 5448103
    Abstract: A resistor circuit (and structure) 10 is disclosed herein. A first resistor 14 has a first temperature coefficient of resistance and is coupled to a second resistor 16 which has a second temperature coefficient of resistance, typically opposite to the first temperature coefficient of resistance. The resistors 14 and 16 are coupled together (e.g., in series or in parallel) to create a total resistor with a predetermined (e.g., substantially zero) temperature coefficient of resistance.
    Type: Grant
    Filed: April 15, 1994
    Date of Patent: September 5, 1995
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel de Wit
  • Patent number: 5353028
    Abstract: A differential fuse circuit 10 is disclosed herein. A first fuse 12 and a second fuse 14 are coupled to a supply potential V.sub.DD (e.g., five volts). Circuitry 16 and 18 for blowing the two fuses 12 and 14 is also provided. A current mirror 46 including a first leg and a second leg is also provided. The current mirror 46 is designed so that a current through the first leg will induce a current in the second leg. The first leg is coupled between the first fuse 12 and a reference potential V.sub.SS and the second leg is coupled between the second fuse 14 and the reference potential V.sub.SS. An output node 56 is provided between the second fuse 14 and the second leg of the current mirror 46. A differential sense circuit 24 may also be included between the fuses 12 and 14 and the current mirror 46.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: October 4, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Michiel de Wit, Khen-Sang Tan
  • Patent number: 5235335
    Abstract: A capacitor array circuit is disclosed herein. A main capacitor array includes at least a most significant array portion 12 and a least significant array portion 14. A coupling capacitor C.sub.C is formed between the two portions of the array. Typically, one plate of the coupling capacitor C.sub.C is coupled to a top plate of each of the capacitors in the least significant array portion 14 and a second plate of the coupling capacitor C.sub.C is coupled to a top plate of each of the capacitors in the most significant array portion 12. A variable calibration capacitor C.sub.CAL is also provided. In a preferred embodiment, the variable calibration capacitor C.sub.CAL is coupled between the coupling capacitor C.sub.C and an AC ground node. In alternate embodiment, the variable calibration capacitor C.sub.CAL is coupled in parallel with the coupling capacitor C.sub.C. In the preferred embodiment, the variable calibration capacitor C.sub.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: August 10, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Richard K. Hester, Khen-Sang Tan, Michiel de Wit
  • Patent number: 5170075
    Abstract: A sample and hold circuit (24) is provided which includes an input terminal (36) for receiving a time varying input voltage. A first capacitor (14) maintains a first voltage corresponding to a sample of said time varying input voltage. A switch (12) having a control terminal (20) is operable to sample the input voltage by coupling input terminal (36) to first capacitor (14) in response to a sampling signal provided at control terminal (20). At least one second capacitor (58, 86) is provided for maintaining a preselected voltage. Circuitry (40, 42, 68, 106) is provided for selectively applying the sampling signal to control terminal (20) of switch (12) by impressing at least the preselected voltage maintained by second capacitor (58, 86) on control terminal (20).
    Type: Grant
    Filed: June 11, 1991
    Date of Patent: December 8, 1992
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel de Wit
  • Patent number: 4803462
    Abstract: An A/D converter includes a positive array of binary weighted capacitors with a common top plate (12) and a negative array of binary weighted capacitors with a common top plate (32). The positive and negative arrays are input to a differential amplifier (10) for measuring the differential voltage across the top plates. During the sample time, a differential input voltage is sampled on the bottom plates of the capacitors and the top plates of the capacitors are disposed at the common mode voltage of the input signal. This limits the input voltage across the capacitors to one-half the differential voltages of the input signal. During the hold mode and the redistribution mode, this presents a predetermined common mode input voltage to the amplifier (10) which is independent of the input signal.
    Type: Grant
    Filed: August 11, 1987
    Date of Patent: February 7, 1989
    Assignee: Texas Instruments Incorporated
    Inventors: Richard K. Hester, Michiel de Wit
  • Patent number: 3982203
    Abstract: An improved optically pumped, acousto-optically Q-switched laser is disclosed, capable of significantly increased output energy. Optical coatings, with their inherent limitations on maximum energy of the output pulse, are completely eliminated. At the reflecting surfaces, Porro prisms replace the mirrors conventionally used. At the non-reflecting or transmitting surfaces, conventional, anti-reflective coatings are eliminated by placing the respective elements at the Brewster angle for the dominant polarization of the Q-switching material. Optimum output coupling is achieved by adjustment of the Q-switch drive. In order to prevent undesired second pulses in the output, which normally limit the maximum attainable output energy, a filtering shield of material opaque to the operating frequency is placed in the laser cavity, between the flash pump and the laser rod, to minimize the possibility of a second-pulse buildup due to random emission before the Q-switch is turned fully off.
    Type: Grant
    Filed: December 28, 1973
    Date of Patent: September 21, 1976
    Assignee: Texas Instruments Incorporated
    Inventor: Michiel de Wit
  • Patent number: 3936769
    Abstract: A techinque for modulating the output signal of an acousto-optically Q-switched laser is disclosed. The switch is energized with an acoustic wave having a frequency equal to the approximate frequency spacing between longitudinal lasing modes of the laser. Among other advantages, the technique permits identification of lasers by length of resonator and through detection of the frequency of modulation of the laser output.
    Type: Grant
    Filed: December 28, 1973
    Date of Patent: February 3, 1976
    Assignee: Texas Instruments Incorporated
    Inventors: Michiel de Wit, Roddy Fro Hotz