Patents by Inventor Michiharu Ota

Michiharu Ota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10137527
    Abstract: In certain embodiments a method and system for laser-based material processing of a material is disclosed. In at least one preferred implementation temporally overlapping pulse series are generated with separate pulsed laser sources, for example nanosecond (NS) and ultrashort pulse (USP) sources (NS-USP). Pulses are delivered to the material as a series of spatially and temporally overlapping pulse pairs. The material can, but need not, be a transparent material. In some applications of transparent material processing, it was found the combination of pulses both substantially more material modification and high machining quality than obtainable with either individual pulse series taken alone. Other micromachining methods and arrangement are disclosed for formation of fine features on or within a substrate. Such methods and arrangements may generally be applied with a NS-USP combination, or with other sources.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: November 27, 2018
    Assignee: IMRA America, Inc.
    Inventors: Michiharu Ota, Alan Y. Arai, Zhenlin Liu
  • Publication number: 20170326688
    Abstract: The present disclosure provides examples of a laser-based material processing system for liquid-assisted, ultrashort pulse (USP) laser micromachining An example material processing application includes drilling thru-holes or blind holes in a nearly transparent glass workpiece (substrate) using parallel processing with an n×m array of focused laser beams. Methods and systems are disclosed herein which provide for formation of high aspect ratio holes with low taper in fine pitch arrangements.
    Type: Application
    Filed: July 25, 2017
    Publication date: November 16, 2017
    Inventors: Mark Turner, Alan Y. Arai, Michiharu Ota
  • Publication number: 20160318122
    Abstract: In certain embodiments a method and system for laser-based material processing of a material is disclosed. In at least one preferred implementation temporally overlapping pulse series are generated with separate pulsed laser sources, for example nanosecond (NS) and ultrashort pulse (USP) sources (NS-USP). Pulses are delivered to the material as a series of spatially and temporally overlapping pulse pairs. The material can, but need not, be a transparent material. In some applications of transparent material processing, it was found the combination of pulses both substantially more material modification and high machining quality than obtainable with either individual pulse series taken alone. Other micromachining methods and arrangement are disclosed for formation of fine features on or within a substrate. Such methods and arrangements may generally be applied with a NS-USP combination, or with other sources.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Michiharu Ota, Alan Y. Arai, Zhenlin Liu
  • Publication number: 20150231738
    Abstract: A laser processing method includes steps of providing a mask material of which thickness is equal to or greater than 10 ?m onto an object, and forming a hole in the object or cutting the object in a state where the mask material is provided on the object, in a manner that an ultrashort-pulse laser light is irradiated from above the object and an opening portion is formed at the mask material to penetrate the mask material while ablation processing is performed to a portion of the object by the ultrashort-pulse laser light, the portion of the object being below the opening portion.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 20, 2015
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Michiharu OTA, Hidetomo TAKAHASHI, Shinya SAKAKIBARA, Fumihiro ITOIGAWA, Shingo ONO
  • Publication number: 20150076518
    Abstract: The present invention aims at providing a semiconductor device having a conductive film formed on a semiconducting substrate so that heating of the substrate and contamination by impurities can be suppressed and Schottky resistance can be reduced, and at providing a method of manufacturing the same. The metal film formation method used in manufacturing the semiconductor device according to an embodiment of the present invention includes the steps of: irradiating one surface of the substrate with a femtosecond laser having energy in the vicinity of the processing threshold value to form a nano-periodic structure in the form of minute irregularities; and forming a metal film on the nano-periodic structure of the substrate. It is thereby possible to reduce the Schottky resistance at the interface between the substrate and the metal film and obtain an ohmic contact while suppressing heating of the substrate and contamination by impurities.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Tatsuya Tanigawa, Michiharu Ota
  • Patent number: 8959955
    Abstract: An inexpensive pulse laser device that outputs a laser pulse capable of welding a transparent member is provided. There is provided a pulse laser device including: a laser light source 1 that outputs a repeated pulse laser; a demultiplexer 2 that demultiplexes the pulse laser output from the laser light source 1 into two pulse lasers; first pulse train generation means 3 that generates a first pulse train by changing at least a peak power and/or a pulse width of one of the two pulse lasers demultiplexed by the demultiplexer 2; and a multiplexer 4 that multiplexes the other of the two pulse lasers demultiplexed by the demultiplexer 2 and the first pulse train generated by the first pulse train generation means 3, in which a pulse laser in which a low-peak power pulse laser is superimposed on a high-peak power ultra-short pulse laser is output.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 24, 2015
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Michiharu Ota
  • Publication number: 20150017817
    Abstract: A laser processing apparatus includes a laser beam generating device that generates a first pulse laser beam for temporarily increasing a light absorptance in a predetermined region of a processing object, and a second pulse laser beam to be absorbed in the predetermined region in which the light absorptance has temporarily increased, and a support portion that is provided on a downstream of the first pulse laser beam and the second laser beam generated by the laser beam generating device and has a placement surface for placing the processing object. The laser beam generating device emits the second pulse laser beam with a delay with respect to the first pulse laser beam by a delay time within a predetermined period of time before the light absorptance that has temporarily increased in the predetermined region returns to an original value.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Hiroyoshi HIEJIMA, Michiharu OTA, Yuta FURUMURA
  • Publication number: 20130008880
    Abstract: An inexpensive pulse laser device that outputs a laser pulse capable of welding a transparent member is provided. There is provided a pulse laser device including: a laser light source 1 that outputs a repeated pulse laser; a demultiplexer 2 that demultiplexes the pulse laser output from the laser light source 1 into two pulse lasers; first pulse train generation means 3 that generates a first pulse train by changing at least a peak power and/or a pulse width of one of the two pulse lasers demultiplexed by the demultiplexer 2; and a multiplexer 4 that multiplexes the other of the two pulse lasers demultiplexed by the demultiplexer 2 and the first pulse train generated by the first pulse train generation means 3, in which a pulse laser in which a low-peak power pulse laser is superimposed on a high-peak power ultra-short pulse laser is output.
    Type: Application
    Filed: March 14, 2011
    Publication date: January 10, 2013
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventor: Michiharu Ota