Patents by Inventor Michio Ito

Michio Ito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210162305
    Abstract: A game device is provided with an object detection unit for detecting positions of a plurality of real objects from a predetermined area, an object control unit for disposing a game object in a virtual area, a collision detection unit for detecting, in the virtual area, collisions between each of a plurality of player objects, which are disposed in positions corresponding to the detected positions of the plurality of real objects, and the game object, a parameter updating unit for updating a parameter of the game each time a collision is detected, a rendering unit for generating a game screen by rendering the virtual area, and a display unit for displaying the game screen in a position that can be seen from the predetermined area.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 3, 2021
    Applicant: SQUARE ENIX CO., LTD.
    Inventors: Kazuki ITO, Isao OHTA, Kiminori ONO, Michio TAKAHASHI
  • Patent number: 11008970
    Abstract: A control device for controlling an engine provided with a fuel pump including a pressurizing chamber, a plunger inserted into the pressurizing chamber and which changes a volume of the pressurizing chamber, and an on-off valve configured to open and close a suction port, is provided. When a pressurizing cycle consists of a period of pressurizing stroke in which the volume of the pressurizing chamber is reduced to allow fuel to be pressurized and a period of suction stroke in which the volume of the pressurizing chamber is increased to allow fuel to be drawn into the pressurizing chamber, a closing cycle of the on-off valve is controlled so that a ratio of the closing cycle to the pressurizing cycle becomes smaller in a second combustion mode where a partial compression-ignition combustion is performed than in a first combustion mode where SI combustion is performed.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: May 18, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Masami Nishida, Toru Miyamae, Shigeki Yamashita, Kazuhiro Takemoto, Michio Ito, Kazuhiro Nishimura, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 11008930
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: May 18, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Patent number: 11002215
    Abstract: A controller for controlling a fuel injection valve and a fuel pressure adjustment mechanism integrates a deposition amount of deposits per unit time, and estimates a deposition amount of deposits on an injection hole of the fuel injection valve. The controller causes the fuel pressure adjustment mechanism to increase a fuel pressure, when the estimated deposition amount exceeds a predetermined value, and corrects the unit deposition amount acquired by the deposition amount estimation according to the set fuel injection timing of the fuel injection valve. The controller corrects such that as compared with the unit deposition amount when the fuel injection timing is set to a first timing away from a top dead center of the piston by a first period, the unit deposition amount decreases when the fuel injection timing is set to a second timing away by a second period longer than the first period.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: May 11, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Takemoto, Michio Ito, Masanari Sueoka, Kazuhiro Nishimura, Kouji Hadama, Masataka Sumita, Masami Nishida
  • Patent number: 10988081
    Abstract: A vehicle notification system performs audio notification regarding a driving status of a vehicle that is capable of self-driving, for an occupant of the vehicle at a predetermined timing during self-driving. The vehicle notification system includes a position identification section that is configured to identify a current position of the vehicle. Based on a destination and the current position, notification that the driving status is conforming to a plan is performed at regular intervals, and notification that the driving status is not conforming to the plan is performed if the driving status is no longer conforming to the plan.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: April 27, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaki Ito, Kihiro Kato, Michio Ikeda, Shotaro Inoue
  • Patent number: 10968856
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: April 6, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Shinji Takayama, Takeatsu Ito, Michio Ito, Kenko Ujihara, Daisaku Ogawa, Daisuke Umetsu
  • Publication number: 20210062709
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: March 4, 2021
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20210017929
    Abstract: A control device for controlling an engine provided with a fuel pump including a pressurizing chamber, a plunger inserted into the pressurizing chamber and which changes a volume of the pressurizing chamber, and an on-off valve configured to open and close a suction port, is provided. When a pressurizing cycle consists of a period of pressurizing stroke in which the volume of the pressurizing chamber is reduced to allow fuel to be pressurized and a period of suction stroke in which the volume of the pressurizing chamber is increased to allow fuel to be drawn into the pressurizing chamber, a closing cycle of the on-off valve is controlled so that a ratio of the closing cycle to the pressurizing cycle becomes smaller in a second combustion mode where a partial compression-ignition combustion is performed than in a first combustion mode where SI combustion is performed.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 21, 2021
    Inventors: Masami Nishida, Toru Miyamae, Shigeki Yamashita, Kazuhiro Takemoto, Michio Ito, Kazuhiro Nishimura, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10883438
    Abstract: A control system for a compression ignition engine is provided, which includes a combustion chamber, a throttle valve, an injector, an ignition plug, a sensor, and a controller. A changing module outputs a signal to the throttle valve so that an air amount increases more than before the change demand, outputs to the injector a signal to increase the fuel amount according to the increase in the air amount so that an air-fuel ratio of the mixture gas becomes a stoichiometric air-fuel ratio or a substantially stoichiometric air-fuel ratio, and performs a torque adjustment so that an increase of the engine torque caused by the increase in the fuel amount is reduced. When the air amount is determined to have reached a given amount, the changing module ends the increasing of the fuel amount and the torque adjustment, and permits that a second mode module starts the second mode.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: January 5, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Patent number: 10876490
    Abstract: A controller for controlling a fuel injection valve and a fuel pressure adjustment mechanism sets an air-fuel ratio of a fuel-air mixture to be generated within a combustion chamber to be equal to or leaner than a theoretical air-fuel ratio, based on an operating condition of an engine; drives the fuel injection valve, based on the set air-fuel ratio; estimates a deposition amount of deposits on an injection hole of the fuel injection valve, based on an operating condition of the engine; causes the fuel pressure adjustment mechanism to increase the fuel pressure, when the estimated deposition amount of deposits exceeds a predetermined value; and restricts the fuel pressure from increasing, even when the estimated deposition amount of deposits exceeds the predetermined value, as long as the fuel-air ratio is set to an air-fuel ratio leaner than the theoretical fuel-air ratio.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 29, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Takemoto, Michio Ito, Masanari Sueoka, Kazuhiro Nishimura, Kouji Hadama, Masataka Sumita, Masami Nishida
  • Publication number: 20200400090
    Abstract: When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 in a manner allowing an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES), and the SPCCI combustion is performed (#13: YES), the ECU 60 executes fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14), so as to attain torque reduction for the vehicle attitude control. On the other hand, when the SPCCI combustion is not performed (#13: NO), the ECU 60 executes ignition retardation control of retarding an ignition timing of the spark plug 16 (#15).
    Type: Application
    Filed: January 22, 2019
    Publication date: December 24, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinji TAKAYAMA, Takeatsu ITO, Michio ITO, Kenko UJIHARA, Daisaku OGAWA, Daisuke UMETSU
  • Publication number: 20200370500
    Abstract: A controller for controlling a fuel injection valve and a fuel pressure adjustment mechanism integrates a deposition amount of deposits per unit time, and estimates a deposition amount of deposits on an injection hole of the fuel injection valve. The controller causes the fuel pressure adjustment mechanism to increase a fuel pressure, when the estimated deposition amount exceeds a predetermined value, and corrects the unit deposition amount acquired by the deposition amount estimation according to the set fuel injection timing of the fuel injection valve. The controller corrects such that as compared with the unit deposition amount when the fuel injection timing is set to a first timing away from a top dead center of the piston by a first period, the unit deposition amount decreases when the fuel injection timing is set to a second timing away by a second period longer than the first period.
    Type: Application
    Filed: March 6, 2020
    Publication date: November 26, 2020
    Inventors: Kazuhiro TAKEMOTO, Michio ITO, Masanari SUEOKA, Kazuhiro NISHIMURA, Kouji HADAMA, Masataka SUMITA, Masami NISHIDA
  • Publication number: 20200370499
    Abstract: A controller for controlling a fuel injection valve and a fuel pressure adjustment mechanism sets an air-fuel ratio of a fuel-air mixture to be generated within a combustion chamber to be equal to or leaner than a theoretical air-fuel ratio, based on an operating condition of an engine; drives the fuel injection valve, based on the set air-fuel ratio; estimates a deposition amount of deposits on an injection hole of the fuel injection valve, based on an operating condition of the engine; causes the fuel pressure adjustment mechanism to increase the fuel pressure, when the estimated deposition amount of deposits exceeds a predetermined value; and restricts the fuel pressure from increasing, even when the estimated deposition amount of deposits exceeds the predetermined value, as long as the fuel-air ratio is set to an air-fuel ratio leaner than the theoretical fuel-air ratio.
    Type: Application
    Filed: March 6, 2020
    Publication date: November 26, 2020
    Inventors: Kazuhiro TAKEMOTO, Michio ITO, Masanari SUEOKA, Kazuhiro NISHIMURA, Kouji HADAMA, Masataka SUMITA, Masami NISHIDA
  • Patent number: 10837391
    Abstract: A control system for a compression ignition engine is provided, which includes a combustion chamber, a throttle valve, an injector, an ignition plug, a sensor, and a controller. A changing module of the controller outputs a signal to the throttle valve so that an air amount increases more than before a demand of changing from a first mode to a second mode, and outputs to the injector a signal to increase a fuel amount according to the air amount increase so that an air-fuel ratio of mixture gas becomes at or substantially at a stoichiometric air-fuel ratio, and outputs to the ignition plug a signal to retard an ignition timing so that an engine torque increase caused by the fuel amount increase is reduced. The changing module reduces the retarding of the ignition timing when the ignition timing is determined to have reached a retard limit.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 17, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Patent number: 10815910
    Abstract: A control system for a compression ignition engine is provided, which includes a sensor and a cylinder count control module which changes between all-cylinder and reduced-cylinder operations when the compression ignition combustion is performed at a given lean air-fuel ratio. The cylinder count control module executes a preparation control to change from the all-cylinder operation to the reduced-cylinder operation when the change is demanded. In the preparation control, the cylinder count control module outputs a signal to a throttle valve to execute an air amount increase processing, outputs a signal to a fuel injection valve to execute a fuel amount increase processing, and outputs a signal to an ignition plug to execute a retard processing. The cylinder count control module ends the fuel amount increase processing and the retard processing when it is determined that an air-fuel ratio is in a given air-fuel ratio state, and starts the reduced-cylinder operation.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: October 27, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Publication number: 20200032736
    Abstract: A control system for a compression ignition engine is provided, which includes a combustion chamber, a throttle valve, an injector, an ignition plug, a sensor, and a controller. A changing module of the controller outputs a signal to the throttle valve so that an air amount increases more than before a demand of changing from a first mode to a second mode, and outputs to the injector a signal to increase a fuel amount according to the air amount increase so that an air-fuel ratio of mixture gas becomes at or substantially at a stoichiometric air-fuel ratio, and outputs to the ignition plug a signal to retard an ignition timing so that an engine torque increase caused by the fuel amount increase is reduced. The changing module reduces the retarding of the ignition timing when the ignition timing is determined to have reached a retard limit.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 30, 2020
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Publication number: 20200032720
    Abstract: A control system for a compression ignition engine is provided, which includes a sensor and a cylinder count control module which changes between all-cylinder and reduced-cylinder operations when the compression ignition combustion is performed at a given lean air-fuel ratio. The cylinder count control module executes a preparation control to change from the all-cylinder operation to the reduced-cylinder operation when the change is demanded. In the preparation control, the cylinder count control module outputs a signal to a throttle valve to execute an air amount increase processing, outputs a signal to a fuel injection valve to execute a fuel amount increase processing, and outputs a signal to an ignition plug to execute a retard processing. The cylinder count control module ends the fuel amount increase processing and the retard processing when it is determined that an air-fuel ratio is in a given air-fuel ratio state, and starts the reduced-cylinder operation.
    Type: Application
    Filed: June 24, 2019
    Publication date: January 30, 2020
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Publication number: 20200032734
    Abstract: A control system for a compression ignition engine is provided, which includes a combustion chamber, a throttle valve, an injector, an ignition plug, a sensor, and a controller. A changing module outputs a signal to the throttle valve so that an air amount increases more than before the change demand, outputs to the injector a signal to increase the fuel amount according to the increase in the air amount so that an air-fuel ratio of the mixture gas becomes a stoichiometric air-fuel ratio or a substantially stoichiometric air-fuel ratio, and performs a torque adjustment so that an increase of the engine torque caused by the increase in the fuel amount is reduced. When the air amount is determined to have reached a given amount, the changing module ends the increasing of the fuel amount and the torque adjustment, and permits that a second mode module starts the second mode.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Patent number: 9422909
    Abstract: An automatic stop device for a vehicle engine includes: an automatic stop control unit which performs automatic engine stop when a predetermined automatic stop initiating condition is established while the vehicle is stopped, and prohibits automatic engine stop when the automatic stop initiating condition is not established; a restart control unit which performs automatic engine restart when a predetermined automatic stop cancelling condition is established after the engine is automatically stopped; and a storage unit which stores a cause of prohibiting automatic engine stop when automatic stop of the engine is prohibited while the vehicle is stopped, or a cause of performing automatic engine restart when the engine that has been automatically stopped is automatically restarted.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: August 23, 2016
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Keitaro Ezumi, Michio Ito
  • Publication number: 20150216637
    Abstract: A dental component is formed from a sintered body of a metal powder having particles containing Co, Cr, Mo, and Si as constituent components. In the particles, Co is contained as a main component, the content of Cr is 26% by mass or more and 35% by mass or less, the content of Mo is 5% by mass or more and 12% by mass or less, and the content of Si is 0.3% by mass or more and 2.0% by mass or less. The dental component has excellent proof stress and corrosion resistance. It is preferred that a part of Si in the sintered body is contained as silicon oxide, and the ratio of the content of Si contained as the silicon oxide to the content of Si in the sintered body is 20% or more and 80% or less.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 6, 2015
    Inventors: Isshin NARUMI, Hidefumi NAKAMURA, Hideki ISHIGAMI, Michio ITO