Patents by Inventor Michio Kaneko

Michio Kaneko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760887
    Abstract: The titanium material includes a titanium oxide layer formed on a surface of titanium being a base material, the titanium oxide layer having a thickness measured by a glow discharge spectrometry of 60 to 300 nm, wherein: the titanium oxide layer contains 0.5 to 7.0 at % of nitrogen, and an arithmetic mean roughness Ra of a surface thereof is 2.0 to 4.0 ?m; and a power spectrum of a surface roughness of the titanium material has a peak of an amplitude height of 0.005 to 0.020 ?m in a range of a wavelength of 1.1 to 2.5 ?m and has a peak of an amplitude height of 0.0010 to 0.0030 ?m in a range of a wavelength of 0.80 to 0.98 ?m. An L*a*b* color space may be L*: 30 to 40, a*: 2.0 to 9.0, and b*: ?7.0 to 18.0.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: September 19, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Michio Kaneko, Kiyonori Tokuno, Takao Wada, Mitsuyuki Hasegawa, Kazuo Yamagishi, Mitsuru Nakayama
  • Publication number: 20210347011
    Abstract: A manufacturing method of a material, including: a first process of placing a blast transfer material on a surface of a base material, and a second process of blasting to the surface of the base material through the blast transfer material, wherein the blast transfer material is nonuniform in one or more of density, thickness, and hardness.
    Type: Application
    Filed: October 28, 2019
    Publication date: November 11, 2021
    Applicants: NIPPON STEEL CORPORATION, JAPAN BLAST PROCESS RESEARCHES CO.,LTD
    Inventors: Michio KANEKO, Kiyonori TOKUNO, Satoshi SHIMAZAKI
  • Publication number: 20210189144
    Abstract: The titanium material includes a titanium oxide layer formed on a surface of titanium being a base material, the titanium oxide layer having a thickness measured by a glow discharge spectrometry of 60 to 300 nm, wherein: the titanium oxide layer contains 0.5 to 7.0 at % of nitrogen, and an arithmetic mean roughness Ra of a surface thereof is 2.0 to 4.0 ?m; and a power spectrum of a surface roughness of the titanium material has a peak of an amplitude height of 0.005 to 0.020 ?m in a range of a wavelength of 1.1 to 2.5 ?m and has a peak of an amplitude height of 0.0010 to 0.0030 ?m in a range of a wavelength of 0.80 to 0.98 ?m. An L*a*b* color space may be L*: 30 to 40, a*: 2.0 to 9.0, and b*: ?7.0 to 18.0.
    Type: Application
    Filed: June 18, 2018
    Publication date: June 24, 2021
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Michio KANEKO, Kiyonori TOKUNO, Takao WADA, Mitsuyuki HASEGAWA, Kazuo YAMAGISHI, Mitsuru NAKAYAMA
  • Patent number: 9885102
    Abstract: The present invention provides colored pure titanium or titanium alloy having low susceptibility to discoloration in an atmospheric environment exhibiting a superior resistance to discoloration even when the titanium is used in an environment of harsh acid rain such as a roof or wall material and free from deterioration of the aesthetic appearance over a long period of time, that is, colored pure titanium obtained by the anodic oxidation method, that is, colored pure titanium or titanium alloy having low susceptibility to discoloration in an atmospheric environment characterized by having an average phosphorus content in a range of 40 nm from a surface of a titanium oxide layer formed on the titanium surface of 5.5 atomic % or less and by having an average carbon concentration in a range of a depth of 100 nm from the titanium surface of 3 to 15 atomic %.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: February 6, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Michio Kaneko, Kiyonori Tokuno, Takao Wada, Mitsuyuki Hasegawa, Kazuo Yamagishi
  • Patent number: 8865612
    Abstract: The provision of beautiful colored titanium which is excellent in adhesion of the pure titanium or a titanium alloy with the base material, is excellent in photocatalytic activity, and further is excellent in design properties and a method of production of the same which is excellent in productivity and uses an anodic oxidation process is made the object. A titanium-based material having visible light response and excellent in photocatalytic activity characterized in that the material has pure titanium or titanium alloy as a base material, a thickness of a titanium oxide layer which is present on its surface is 0.1 ?m to 5.0 ?m in range, said titanium oxide layer contains anatase-type titanium dioxide and titanium bonded with hydroxy groups, and further said titanium oxide layer contains nitrogen and carbon respectively in 0.5 to 30 mass %.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: October 21, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Michio Kaneko, Kiyonori Tokuno, Hiroshi Shimizu, Kazuo Yamagishi, Asami Shimomura, Mituyuki Hasegawa, Ruriko Yokoyama
  • Patent number: 8785031
    Abstract: The present invention provides a polymer electrolyte fuel cell separator made of pure titanium or a titanium alloy superior in contact resistance with carbon paper and a method of production of the same, that is, a separator having a surface layer part to which conductive compound particles are affixed, characterized in that the surface oxide has a thickness of 3 to 15 nm in range, an average carbon concentration in a range from an outermost surface, including the oxide layer, to a depth of 100 nm is 0.02 to 6 at %, and the conductive compound particles have an average particle size of 0.01 to 20 ?m. Further, the method of production of the present invention is characterized by forming, blast treating a surface of the formed article by particles comprised of conductive compound particles of an average particle size of 0.01 to 20 ?m covering a surface of superhard core particles, impregnating it by a nitric acid aqueous solution of a concentration of 15 to 71 mass % and a temperature of 40 to 100° C.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: July 22, 2014
    Assignee: Nippon Steel Sumitomo Metal Corporation
    Inventors: Michio Kaneko, Kazuhiro Takahashi, Kiyonori Tokuno, Hiroshi Kihira, Wataru Hisada
  • Patent number: 8603268
    Abstract: A titanium material for a solid polymer fuel cell separator having a low contact resistance and a method of production of the same, the titanium material having at its surface a surface layer structure in which particles of a Ti compound containing either C or N are dispersed, the particles of Ti compound being covered by titanium oxide and/or metal Ti, characterized in that, when analyzed from the surface by XPS, a Ti2p spectrum of TiO2 is detected, further, at a Ti2p spectral energy range of TiO and/or a Ti2p spectral energy range of metal Ti, a Ti maximum detection peak height is at least 3 times the standard deviations of the background at the respective spectral energy ranges, and at a C1s spectral energy range and N1s spectral energy range, a maximum detection peak height is less than 3 times the standard deviations of the background at the respective spectral energy ranges of C1s and N1s, are provided.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 10, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kazuhiro Takahashi, Kiyonori Tokuno, Hiroshi Kihira, Koki Tanaka, Michio Kaneko
  • Patent number: 8361676
    Abstract: The present invention provides a method of production of a separator for a solid polymer type fuel cell characterized by shaping a substrate comprised of stainless steel, titanium, or a titanium alloy and then spraying the substrate surface with superhard core particles comprised of conductive compound particles of an average particle size of 0.01 to 20 ?m mixed with a coating material and coated on their surfaces under conditions of a spray pressure of 0.4 MPa or less and a spray amount per cm2 of the substrate of 10 to 100 g in blast treatment. The ratio of the conductive compound to the mass of the core particles is 0.5 to 15 mass %.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 29, 2013
    Assignee: Nippon Steel Corporation
    Inventors: Koki Tanaka, Youichi Ikematsu, Hiroshi Kihira, Michio Kaneko, Wataru Hisada, Tamotsu Itoh
  • Patent number: 8352571
    Abstract: Local concentration of accessing loads on a data buffer during data cell reading is reduced. Also, by providing sufficient time for a data cell reading operation with respect to data cell transmission timing, transmission rate fluctuation of CBR data cells in a transmitting side is reduced. When transmission of a new data stream is added, controller in a cell control unit refers to a transmitted data cell count of VC information processed through a slot immediately before. The controller determines whether a data cell transmitted through the slot immediately before is a head portion of a packet or not. If the data cell transmitted through the slot immediately before is the head portion of the packet, the controller only adds the VC information of the data stream to a shaper link list, and withholds transmission of the data cell.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: January 8, 2013
    Assignee: Juniper Networks, Inc.
    Inventor: Michio Kaneko
  • Patent number: 8304141
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 6, 2012
    Assignee: Sintokogio Ltd.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Publication number: 20120135855
    Abstract: The provision of beautiful colored titanium which is excellent in adhesion of the pure titanium or a titanium alloy with the base material, is excellent in photocatalytic activity, and further is excellent in design properties and a method of production of the same which is excellent in productivity and uses an anodic oxidation process is made the object. A titanium-based material having visible light response and excellent in photocatalytic activity characterized in that the material has pure titanium or titanium alloy as a base material, a thickness of a titanium oxide layer which is present on its surface is 0.1 ?m to 5.0 ?m in range, said titanium oxide layer contains anatase-type titanium dioxide and titanium bonded with hydroxy groups, and further said titanium oxide layer contains nitrogen and carbon respectively in 0.5 to 30 mass %.
    Type: Application
    Filed: June 1, 2010
    Publication date: May 31, 2012
    Inventors: Michio Kaneko, Kiyonori Tokuno, Hiroshi Shimizu, Kazuo Yamagishi, Asami Shimomura, Mituyuki Hasegawa, Ruriko Yokoyama
  • Patent number: 8182961
    Abstract: The present invention provides a separator for a solid polymer type fuel cell superior in low contact resistance of the fuel cell separator surface with carbon paper and flatness and a method of production of the same, that is, a separator for a solid polymer type fuel cell comprising a substrate of stainless steel or titanium or a titanium alloy having a surface layer part on which conductive compound particles are fixed, wherein said conductive compound particles are comprised of one or more types of metal borides, metal carbides, and metal nitrides with an average particle size of 0.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 22, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Koki Tanaka, Youichi Ikematsu, Hiroshi Kihira, Michio Kaneko, Wataru Hisada, Tamotsu Itoh
  • Patent number: 8114527
    Abstract: A highly corrosion-resistant, rust-prevention coating material comprising: an inorganic binder; and Zn metal particles comprised of Zn and unavoidable impurities and dispersed in the binder at the rate of 30 mass % or greater based on a dry coating film, wherein (i) the Zn metal particles include (i-1) fine-grain Zn metal particles of 0.05 to 5 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with a single peak and a tail on either side of the peak and (i-2) coarse-grain Zn metal particles of 6 to 100 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with another single peak and a tail on either side of the peak, and wherein (ii) the percentage of all Zn metal particles accounted for by Zn metal particles of 0.05 to 5 ?m grain diameter expressed in volume percentage is 5 to 99%.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 14, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Makoto Nagasawa, Minoru Ito, Michio Kaneko, Kenji Katoh, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Publication number: 20120034372
    Abstract: The present invention provides a method of production of a separator for a solid polymer type fuel cell characterized by shaping a substrate comprised of stainless steel, titanium, or a titanium alloy and then spraying the substrate surface with superhard core particles comprised of conductive compound particles of an average particle size of 0.01 to 20 ?m mixed with a coating material and coated on their surfaces under conditions of a spray pressure of 0.4 MPa or less and a spray amount per cm2 of the substrate of 10 to 100 g in blast treatment. The ratio of the conductive compound to the mass of the core particles is 0.5 to 15 mass %.
    Type: Application
    Filed: September 7, 2011
    Publication date: February 9, 2012
    Inventors: Koki Tanaka, Youichi Ikematsu, Hiroshi Kihira, Michio Kaneko, Wataru Hisada, Tamotsu Itoh
  • Patent number: 8105699
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Publication number: 20110177430
    Abstract: A titanium material for a solid polymer fuel cell separator having a low contact resistance and a method of production of the same, the titanium material having at its surface a surface layer structure in which particles of a Ti compound containing either C or N are dispersed, the particles of Ti compound being covered by titanium oxide and/or metal Ti, characterized in that, when analyzed from the surface by XPS, a Ti2p spectrum of TiO2 is detected, further, at a Ti2p spectral energy range of TiO and/or a Ti2p spectral energy range of metal Ti, a Ti maximum detection peak height is at least 3 times the standard deviations of the background at the respective spectral energy ranges, and at a C1s spectral energy range and N1s spectral energy range, a maximum detection peak height is less than 3 times the standard deviations of the background at the respective spectral energy ranges of C1s and N1s, are provided.
    Type: Application
    Filed: July 30, 2009
    Publication date: July 21, 2011
    Inventors: Kazuhiro Takahashi, Kiyonori Tokuno, Hiroshi Kihira, Koki Tanaka, Michio Kaneko
  • Publication number: 20110032537
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicants: NIPPON STEEL CORPORATION, SINTOBRATOR, LTD.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Patent number: 7807281
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: October 5, 2010
    Assignees: Nippon Steel Corporation, Sintokogio Ltd.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Publication number: 20100247956
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Application
    Filed: September 7, 2007
    Publication date: September 30, 2010
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Patent number: 7803462
    Abstract: The titanium materials of the present invention have an oxide film on the surface and an interference color of the oxide film. In forming a transparent coating layer on the surface of the titanium materials, provisions are made so that the oxide film has an thickness of 150 nm to 600 nm, or the interference color due to the anodic oxide film is developed by the actions of both wavelengths strengthened and weakened by interference and the color phases of the color developed by the wavelength strengthened by interference and that of complementary colors of the color developed by the wavelength weakened by interference are as close to each as not more than 90 degrees apart on the color wheel, or the L* value on the L*a*b* calorimetric system is not less than 33. The laminated glasses of the present invention having excellent ornamentality comprise at least said titanium sheet interposed between multiple sheet glasses layered together by means of adhesive layers.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: September 28, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Takehiro Takahashi, Michio Kaneko, Hiroshi Osawa, Hiroshi Kanai