Patents by Inventor Michiya Yamada

Michiya Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10756261
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 25, 2020
    Assignee: III HOLDINGS 3, LTD.
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Publication number: 20200136029
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Application
    Filed: November 1, 2019
    Publication date: April 30, 2020
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Patent number: 10468591
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 5, 2019
    Assignee: III HOLDINGS 3, LLC
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Publication number: 20170125665
    Abstract: A magnetic miniaturized memory element with improved thermal stability of magnetization includes a first magnetic layer, an insulating layer that is formed on the first magnetic layer, a second magnetic layer that is formed on the insulating layer, and an expanded interlayer insulating film that comes into contact with side surfaces of the first and second magnetic layers, where at least one of the first magnetic layer and the second magnetic layer is strained and deformed so as to be elongated in an easy magnetization axis direction of the first magnetic layer or the second magnetic layer or compressive strain remains in any direction in the plane of at least one of the first magnetic layer and the second magnetic layer.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 4, 2017
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Publication number: 20170092853
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Patent number: 9543508
    Abstract: A magnetic miniaturized memory element with improved thermal stability of magnetization includes a first magnetic layer, an insulating layer that is formed on the first magnetic layer, a second magnetic layer that is formed on the insulating layer, and an expanded interlayer insulating film that comes into contact with side surfaces of the first and second magnetic layers, where at least one of the first magnetic layer and the second magnetic layer is strained and deformed so as to be elongated in an easy magnetization axis direction of the first magnetic layer or the second magnetic layer or compressive strain remains in any direction in the plane of at least one of the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: January 10, 2017
    Assignee: III HOLDINGS 3, LLC
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Patent number: 9525127
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: December 20, 2016
    Assignee: III Holdings 3, LLC
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Publication number: 20150214471
    Abstract: The invention provides a magnetoresistance element with a configuration such that a stable switching action is possible with a current flowing in response to the application of a unipolar electrical pulse, and a non-volatile semiconductor storage device using the magnetoresistance element. A magnetoresistance element 1-1 includes a magnetic tunnel junction portion 13 configured by sequentially stacking a perpendicularly magnetized first magnetic body 22, an insulation layer 21, and a perpendicularly magnetized second magnetic body 200. The second magnetic body 200 has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer 21 side interface.
    Type: Application
    Filed: December 10, 2014
    Publication date: July 30, 2015
    Applicant: lll Holdings 3, LLC
    Inventors: Michiya Yamada, Yasuchi Ogimoto
  • Patent number: 9048250
    Abstract: A method of manufacturing a super-junction semiconductor device is disclosed that allows forming a high concentration layer with high precision and improves the trade-off relationship between the Eoff and the dV/dt. The method comprises a step of forming a parallel pn layer and a step of forming a proton irradiated layer in the upper region of the pn layer. Then, heat treatment is conducted on the proton irradiated layer for transforming the protons into donors to form a high concentration n type semiconductor layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 2, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Michiya Yamada, Tatsuhiko Fujihira
  • Patent number: 9035376
    Abstract: A semiconductor device and method of manufacturing the semiconductor device is disclosed in which the tradeoff relationship between the Eoff and the turning OFF dV/dt is improved at a low cost using a trench embedding method. The method comprises a step of forming a parallel pn layer that is a superjunction structure using a trench embedding method and a step of ion implantation into an upper part of an n type semiconductor layer, i.e., an n type column, forming a high concentration n type semiconductor region. This method improves the trade-off relationship between the Eoff and the turning OFF dV/dt as compared with a high concentration n type semiconductor region formed of an epitaxial layer. This method achieves shorter process time and lower cost in manufacturing because it eliminates the redundant repeating of steps performed in the conventional method of forming a superjunction structure through multi-stage epitaxial growth.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: May 19, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Mutsumi Kitamura, Michiya Yamada, Tatsuhiko Fujihira
  • Patent number: 8995179
    Abstract: A magnetoresistance element is disclosed. The magnetoresistance element includes a magnetic tunnel junction portion configured by sequentially stacking a perpendicularly magnetized first magnetic body, an insulation layer, and a perpendicularly magnetized second magnetic body. The second magnetic body has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer side interface. A heat assist layer that heats the second magnetic body with a heat generated based on a current flowing through the magnetic tunnel junction portion is further provided.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: March 31, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Publication number: 20140242769
    Abstract: A method of manufacturing a super-junction semiconductor device is disclosed that allows forming a high concentration layer with high precision and improves the trade-off relationship between the Eoff and the dV/dt using a trench embedding method. The method comprises a step of forming a parallel pn layer using a trench embedding method and a step of forming a proton irradiated layer in the upper region of the pn layer. Then, heat treatment is conducted on the proton irradiated layer for transforming the protons into donors to form a high concentration n type semiconductor layer. Forming the high concentration n type semiconductor layer by means of proton irradiation allows forming a high concentration n type semiconductor layer with an impurity concentration and thickness with high precision as compared with forming the layer by means of an epitaxial growth process.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Michiya YAMADA, Tatsuhiko FUJIHARA
  • Publication number: 20140225217
    Abstract: A semiconductor device and method of manufacturing the semiconductor device is disclosed in which the tradeoff relationship between the Eoff and the turning OFF dV/dt is improved at a low cost using a trench embedding method. The method comprises a step of forming a parallel pn layer that is a superjunction structure using a trench embedding method and a step of ion implantation into an upper part of an n type semiconductor layer, i.e., an n type column, forming a high concentration n type semiconductor region. This method improves the trade-off relationship between the Eoff and the turning OFF dV/dt as compared with a high concentration n type semiconductor region formed of an epitaxial layer. This method achieves shorter process time and lower cost in manufacturing because it eliminates the redundant repeating of steps performed in the conventional method of forming a superjunction structure through multi-stage epitaxial growth.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Mutsumi KITAMURA, Michiya YAMADA, Tatsuhiko FUJIHIRA
  • Patent number: 8803263
    Abstract: An object of the invention is to ensure the thermal stability of magnetization even when a magnetic memory element is miniaturized. A magnetic memory element includes a first magnetic layer (22), an insulating layer (21) that is formed on the first magnetic layer (22), and a second magnetic layer (20) that is formed on the insulating layer (21). At least one of the first magnetic layer (22) and the second magnetic layer (20) is strained and deformed so as to be elongated in an easy magnetization axis direction of the magnetic layer (22) or (20) or compressive strain (101) remains in any direction in the plane of at least one of the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 12, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Publication number: 20140217534
    Abstract: A magnetic miniaturized memory element with improved thermal stability of magnetization includes a first magnetic layer, an insulating layer that is formed on the first magnetic layer, a second magnetic layer that is formed on the insulating layer, and an expanded interlayer insulating film that comes into contact with side surfaces of the first and second magnetic layers, where at least one of the first magnetic layer and the second magnetic layer is strained and deformed so as to be elongated in an easy magnetization axis direction of the first magnetic layer or the second magnetic layer or compressive strain remains in any direction in the plane of at least one of the first magnetic layer and the second magnetic layer.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Michiya YAMADA, Yasushi OGIMOTO
  • Patent number: 8514617
    Abstract: A magnetic memory element capable of maintaining high thermal stability (retention characteristics) while reducing a writing current. The magnetic memory element includes a magnetic tunnel junction having a first magnetic body including a perpendicular magnetization film, an insulating layer, and a second magnetic body serving as a storage layer including a perpendicular magnetization film, which are sequentially stacked. A thermal expansion layer is disposed in contact with the magnetic tunnel junction portion. The second magnetic body is deformed in a direction in which the cross section thereof increases or decreases by the thermal expansion or contraction of the thermal expansion layer due to the flow of a current, thereby reducing a switching current threshold value required to change the magnetization direction.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 20, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Patent number: 8456896
    Abstract: A magnetic memory element having a memory cell of size 4F2 is provided that realizes a crosspoint-type memory. In the magnetic memory element, a first magnetic layer, a third magnetic layer (spin polarization enhancement layer), an intermediate layer, a fourth magnetic layer (spin polarization enhancement layer), and a second magnetic layer are stacked in order. The intermediate layer is made of an insulating material or a nonmagnetic material. The second magnetic layer is composed of a ternary alloy of gadolinium, iron and cobalt, a binary alloy of gadolinium and cobalt, or a binary alloy of terbium and cobalt. Alternatively, the first magnetic layer is composed of a ternary alloy of terbium, iron and cobalt, or a binary alloy of terbium and cobalt.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 4, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Publication number: 20120230089
    Abstract: A magnetoresistance element is disclosed. The magnetoresistance element includes a magnetic tunnel junction portion configured by sequentially stacking a perpendicularly magnetized first magnetic body, an insulation layer, and a perpendicularly magnetized second magnetic body. The second magnetic body has a configuration wherein a ferromagnetic layer and a rare earth-transition metal alloy layer are stacked sequentially from the insulation layer side interface. A heat assist layer that heats the second magnetic body with a heat generated based on a current flowing through the magnetic tunnel junction portion is further provided.
    Type: Application
    Filed: August 4, 2010
    Publication date: September 13, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Patent number: 8223512
    Abstract: A power converter includes a small-sized inductor connected to an AC voltage input line for power factor correction and a filter for suppressing conduction noise. The inductor is connected to a rectifier and comprises first and second windings and that are wound on a common magnetic core and loosely coupled with each other. A leakage inductance component of the inductor functions as an energy storage element in a main conversion operation and an excitation inductance component of the inductor functions as a noise reduction element for suppressing an conduction noise caused by on-off operation of a switching element.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 17, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yukihiro Nishikawa
  • Publication number: 20120075922
    Abstract: A magnetic memory element capable of maintaining high thermal stability (retention characteristics) while reducing a writing current. The magnetic memory element includes a magnetic tunnel junction having a first magnetic body including a perpendicular magnetization film, an insulating layer, and a second magnetic body serving as a storage layer including a perpendicular magnetization film, which are sequentially stacked. A thermal expansion layer is disposed in contact with the magnetic tunnel junction portion. The second magnetic body is deformed in a direction in which the cross section thereof increases or decreases by the thermal expansion or contraction of the thermal expansion layer due to the flow of a current, thereby reducing a switching current threshold value required to change the magnetization direction.
    Type: Application
    Filed: March 17, 2010
    Publication date: March 29, 2012
    Applicant: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto