Patents by Inventor Mieke Dams

Mieke Dams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10995168
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 4, 2021
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Mieke Dams, Daniel Siraux
  • Publication number: 20190194371
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and e
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 10259898
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: April 16, 2019
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Mieke Dams, Daniel Siraux
  • Publication number: 20160355621
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and e
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 9447206
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 20, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: Mieke Dams, Daniel Siraux
  • Publication number: 20120010362
    Abstract: The present invention relates to a method for preparing and extruding a bimodal polyethylene product, which comprises a first polyethylene fraction and a second polyethylene fraction having a different molecular weight than the first polyethylene fraction. More specifically, the present invention relates to a method for controlling the specific energy applied on said bimodal polyethylene product by regulating the amount of the polyethylene fraction having the higher molecular weight in said bimodal polyethylene product. According to the present invention regulation of the amount of said polyethylene fraction having the higher molecular weight in said bimodal polyethylene product is obtained by regulating the polymerization conditions for preparing the bimodal polyethylene product, and in particular by adjusting ethylene monomer feed during the polymerization process.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 12, 2012
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventor: Mieke Dams
  • Publication number: 20110172322
    Abstract: The invention relates to a long chain branched medium and low density polyethylene having a combination of the following properties: a) a density of from 0.910 to 0.945 g/cm3; b) an HLMI of from 2 to 150 dg/min and an MI2 of from 0.01 to 2 dg/min; c) a polydispersity index (PDI) Mw/Mn of at least 7, wherein Mw is the weight average molecular weight and Mn is the number average molecular weight of the polyethylene; and d) and a minimum amount of long chain branching measured by a value selected from one of grheo and LCBI. The invention also relates to a process for obtaining said polyethylene comprising the following steps: a) injecting ethylene, one or more alpha-olefinic comonomers comprising 3 to 10 carbon atoms and an activated chromium-based catalyst into a gas phase polymerisation reactor; b) copolymerising said ethylene and comonomer in said reactor in the gas phase; and c) retrieving an ethylene copolymer having a density of from 0.910 to 0.
    Type: Application
    Filed: April 13, 2007
    Publication date: July 14, 2011
    Applicant: Total Petrochemicals Research Feluy
    Inventors: Jacques Michel, Guy Debras, Philippe Bodart, Mieke Dams, Pascal Charlier
  • Publication number: 20100069585
    Abstract: The present invention provides a process for preparing a supported chromium-based catalyst for the production of polyethylene comprising the steps of a) providing a silica-based support having a specific surface area of at least 250 m2/g and of less than 400 m2/g and comprising a chromium compound deposited thereon, the ratio of the specific surface area of the support to chromium content being at least 50000 m2/g Cr; b) dehydrating the product of step a); and c) titanating the product of step b) in an atmosphere of dry and inert gas containing at least one vaporised titanium compound of the general formula selected from RnTi(OR?)m and (RO)nTi(OR?)m, wherein R and R? are the same or different hydrocarbyl groups containing from 1 to 12 carbon atoms, and wherein n is 0 to 3, m is 1 to 4 and m+n equals 4, to form a titanated chromium-based catalyst having a ratio of specific surface area of the support to titanium content of the titanated catalyst ranging from 5000 to 20000 m2/g Ti.
    Type: Application
    Filed: April 13, 2007
    Publication date: March 18, 2010
    Applicant: Total Petrochemicals Research Feluy
    Inventors: Philippe Bodart, Guy Debras, Mieke Dams
  • Publication number: 20090326169
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Application
    Filed: March 29, 2007
    Publication date: December 31, 2009
    Inventors: Mieke Dams, Daniel Siraux