Patents by Inventor Miguel A. Contreras

Miguel A. Contreras has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5948176
    Abstract: The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: September 7, 1999
    Assignee: Midwest Research Institute
    Inventors: Kannan V. Ramanathan, Miguel A. Contreras, Raghu N. Bhattacharya, James Keane, Rommel Noufi
  • Patent number: 5804054
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: September 8, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5730852
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: March 24, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5441897
    Abstract: A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: August 15, 1995
    Assignee: Midwest Research Institute
    Inventors: Rommel Noufi, Andrew M. Gabor, John R. Tuttle, Andrew L. Tennant, Miguel A. Contreras, David S. Albin, Jeffrey J. Carapella
  • Patent number: 5436204
    Abstract: A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: July 25, 1995
    Assignee: Midwest Research Institute
    Inventors: David S. Albin, Jeffrey J. Carapella, John R. Tuttle, Miguel A. Contreras, Andrew M. Gabor, Rommel Noufi, Andrew L. Tennant
  • Patent number: 5356839
    Abstract: Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: October 18, 1994
    Assignee: Midwest Research Institute
    Inventors: John R. Tuttle, Miguel A. Contreras, Rommel Noufi, David S. Albin