Patents by Inventor Miguel A. Jimarez
Miguel A. Jimarez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8912051Abstract: A novel die seal design, and method for utilization thereof, controls contact of a mold material with the surfaces of a semiconductor die during application, reducing stresses due to a mismatch of the coefficient of thermal expansion of the mold material and the semiconductor die, thereby reducing cracking of the semiconductor die, resulting in increased yields and lower costs, and permits reuse of elements of a mold tool over a range of die sizes.Type: GrantFiled: August 1, 2012Date of Patent: December 16, 2014Assignee: Amkor Technology, Inc.Inventors: Ahmer Syed, Miguel Jimarez, Jeff Watson
-
Patent number: 7353590Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.Type: GrantFiled: September 12, 2005Date of Patent: April 8, 2008Assignee: International Business Machines CorporationInventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
-
Publication number: 20080043909Abstract: A system of using x-rays to align screen printing of flip chip using x-ray sub-assembly in a chip fabricating assembly. X-rays are directed onto a substrate having receptor pads and a printing screen having fine apertures. The substrate is aligned with the printing screen based on the detection and analysis of the real-time image generated from the x-rays passing through the substrate and printing screen. The x-ray alignment system is capable of aligning gold plated receptor pads of five microns or less and disposed upon a low light contrast ceramic (e.g., 9011 alumina) substrate with a screen printing stencil having very small apertures of less than 125 microns.Type: ApplicationFiled: June 6, 2007Publication date: February 21, 2008Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventor: Miguel Jimarez
-
Patent number: 7328506Abstract: A method for forming a plated microvia interconnect. An external dielectric layer (EDL) is mounted on a surface of the substrate and is in direct mechanical contact with a conductive element included in the surface. An opening formed in the EDL exposes the conductive element and creates a microvia in the EDL. A sidewall and bottom wall surface of the microvia is treated to promote copper adhesion to the sidewall and bottom wall surfaces. The sidewall and bottom wall surfaces are plated to form a layer of copper thereon. The layer of copper is in direct mechanical and electrical contact with the conductive element. A wet solder paste deposited on the layer of copper overfills a remaining portion of the microvia. The solder paste is reflowed to form a solder bump in and over the remaining portion of the microvia to form the plated microvia interconnect.Type: GrantFiled: October 25, 2002Date of Patent: February 12, 2008Assignee: International Business Machines CorporationInventors: Miguel A. Jimarez, Ross W. Keesler, Voya R. Markovich, Rajinder S. Rai, Cheryl L. Tytran-Palomaki
-
Publication number: 20080017410Abstract: A method for forming a plated microvia interconnect. An external dielectric layer (EDL) is mounted on a substrate in direct mechanical contact with a conductive element thereon. An opening in the EDL exposes the conductive element and create a microvia in the EDL. A sidewall and bottom wall surface of the microvia are treated to promote adhesion of copper and are plated with a layer of copper that includes a copper layer on a copper seed layer and is in direct mechanical and electrical contact with the conductive element. A wet solder paste is deposited on the layer of copper to overfill a remaining portion of the microvia. The solder paste is reflowed to form a solder bump in and over the remaining portion of the microvia to form the plated microvia interconnect. A stiffener is attached to the EDL using a first adhesive.Type: ApplicationFiled: October 2, 2007Publication date: January 24, 2008Inventors: Miguel Jimarez, Ross Keesler, Voya Markovich, Rajinder Rai, Cheryl Tytran-Palomaki
-
Publication number: 20070278654Abstract: An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.Type: ApplicationFiled: July 16, 2007Publication date: December 6, 2007Inventors: Lisa Jimarez, Miguel Jimarez, Voya Markovich, Cynthia Milkovich, Charles Perry, Brenda Peterson
-
Patent number: 7278207Abstract: An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.Type: GrantFiled: July 15, 2005Date of Patent: October 9, 2007Assignee: International Business Machines CorporationInventors: Lisa J. Jimarez, Miguel A. Jimarez, Voya R. Markovich, Cynthia S. Milkovich, Charles H. Perry, Brenda L. Peterson
-
Patent number: 6989607Abstract: A method and structure to electrically couple a semiconductor device to a substrate that is divided into a plurality of segments. Alternatively, a semiconductor device may be divided into a plurality of segments and the plurality of segments are electrically coupled to a single substrate.Type: GrantFiled: July 29, 2003Date of Patent: January 24, 2006Assignee: International Business Machines CorporationInventors: Krishna Darbha, Miguel A. Jimarez, Matthew M. Reiss, Sanjeev B. Sathe, Charles G. Woychik
-
Patent number: 6986198Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer termination in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.Type: GrantFiled: December 22, 2003Date of Patent: January 17, 2006Assignee: International Business Machines CorporationInventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
-
Publication number: 20060005383Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.Type: ApplicationFiled: September 12, 2005Publication date: January 12, 2006Applicant: International Business Machines CorporationInventors: Kenneth Fallon, Miguel Jimarez, Ross Keesler, John Lauffer, Roy Magnuson, Voya Markovich, Irv Memis, Jim Paoletti, Marybeth Perrino, John Welsh, William Wilson
-
Publication number: 20050250249Abstract: An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.Type: ApplicationFiled: July 15, 2005Publication date: November 10, 2005Inventors: Lisa Jimarez, Miguel Jimarez, Voya Markovich, Cynthia Milkovich, Charles Perry, Brenda Peterson
-
Patent number: 6961995Abstract: An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.Type: GrantFiled: September 19, 2002Date of Patent: November 8, 2005Assignee: International Business Machines CorporationInventors: Lisa J. Jimarez, Miguel A. Jimarez, Voya R. Markovich, Cynthia S. Milkovich, Charles H. Perry, Brenda L. Peterson
-
Patent number: 6955982Abstract: An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.Type: GrantFiled: November 18, 2003Date of Patent: October 18, 2005Assignee: International Business Machines CorporationInventors: Miguel A. Jimarez, Cynthia S. Milkovich, Mark V. Pierson
-
Publication number: 20050194427Abstract: A method of using x-rays to align screen printing of flip chip using x-ray sub-assembly in a chip fabricating assembly. X-rays are directed onto a substrate having receptor pads and a printing screen having fine apertures. The substrate is aligned with the printing screen based on the detection and analysis of the real-time image generated from the x-rays passing through the substrate and printing screen. The x-ray alignment system is capable of aligning gold plated receptor pads of five microns or less and disposed upon a low light contrast ceramic (e.g., 9011 alumina) substrate with a screen printing stencil having very small apertures of less than 125 microns.Type: ApplicationFiled: May 9, 2005Publication date: September 8, 2005Applicant: International Business Machines CorporationInventor: Miguel Jimarez
-
Patent number: 6818972Abstract: A method and structure for reducing chip carrier flexing during thermal cycling. A semiconductor chip is coupled to a stiff chip carrier (i.e., a chip carrier having an elastic modulus of at least about 3×105 psi), and there is no stiffener ring on a periphery of the chip carrier. Without the stiffener ring, the chip carrier is able to undergo natural flexing (in contrast with constrained flexing) in response to a temperature change that induces thermal strains due to a mismatch in coefficient of thermal expansion between the chip and the chip carrier. If the temperature at the chip carrier changes from room temperature to a temperature of about −40° C., a maximum thermally induced displacement of a surface of the chip carrier is at least about 25% less if the stiffener ring is absent than if the stiffener ring is present.Type: GrantFiled: September 30, 2002Date of Patent: November 16, 2004Assignee: International Business Machines CorporationInventors: Lisa J. Jimarez, Miguel A. Jimarez
-
Publication number: 20040134685Abstract: A method of forming a printed circuit board with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the board including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.Type: ApplicationFiled: December 22, 2003Publication date: July 15, 2004Applicant: International Business Machines CorporationInventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
-
Patent number: 6757967Abstract: A chip mounting assembly is provided which includes a dielectric substrate having at least one integrated circuit (I/C) chip mounted thereon. An electrically conductive cover plate is in contact with all the chips with an electrically non-conducting thermally conducting adhesive. A stiffener member is provided which is mounted ante substrate and laterally spaced from the integrated circuit chip. At least one electrically conductive ground pad is formed an the substrate. The stiffener member has at least one through opening therein and electrically conductive adhesive extending through each opening and contacting the cover plate and each ground pad. The invention also provides a method of forming such an I/C chip assembly.Type: GrantFiled: April 9, 2002Date of Patent: July 6, 2004Assignee: International Business Machines CorporationInventors: Lisa J. Jimarez, Miguel A. Jimarez
-
Patent number: 6756680Abstract: An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.Type: GrantFiled: February 12, 2001Date of Patent: June 29, 2004Assignee: International Business Machines CorporationInventors: Miguel A. Jimarez, Cynthia S. Milkovich, Mark V. Pierson
-
Patent number: 6750405Abstract: A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers.Type: GrantFiled: October 17, 2000Date of Patent: June 15, 2004Assignee: International Business Machines CorporationInventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
-
Publication number: 20040094842Abstract: An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.Type: ApplicationFiled: November 18, 2003Publication date: May 20, 2004Inventors: Miguel A. Jimarez, Cynthia S. Milkovich, Mark V. Pierson