Patents by Inventor Miguel Angel Gonzalez Salazar

Miguel Angel Gonzalez Salazar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9938944
    Abstract: A system 10 and method of operating the system 10 are disclosed. The system 10 includes a compressor 20, a combustion engine 30, and an input system 60. The compressor 20 is configured to mix and compress a liquid hydrocarbon fuel 15 and a first hydrocarbon gas fuel 17, thereby to form a liquid fuel mixture 21. The combustion engine 30 is disposed downstream of the compressor 20 and includes a dual fuel injection system 40 and a combustion chamber 50. The dual fuel injection system 40 includes a nozzle 42 that is configured to inject the liquid fuel mixture 21 into the combustion chamber 50 of the combustion engine 30. The input system 60 is fluidly connected with the combustion engine 30, and configured to inject air 62 and a second hydrocarbon gas fuel 64 into the combustion chamber 50.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: April 10, 2018
    Assignee: General Electric Company
    Inventors: Miguel Angel Gonzalez Salazar, Guillaume Becquin
  • Publication number: 20170145970
    Abstract: A system 10 and method of operating the system 10 are disclosed. The system 10 includes a compressor 20, a combustion engine 30, and an input system 60. The compressor 20 is configured to mix and compress a liquid hydrocarbon fuel 15 and a first hydrocarbon gas fuel 17, thereby to form a liquid fuel mixture 21. The combustion engine 30 is disposed downstream of the compressor 20 and includes a dual fuel injection system 40 and a combustion chamber 50. The dual fuel injection system 40 includes a nozzle 42 that is configured to inject the liquid fuel mixture 21 into the combustion chamber 50 of the combustion engine 30. The input system 60 is fluidly connected with the combustion engine 30, and configured to inject air 62 and a second hydrocarbon gas fuel 64 into the combustion chamber 50.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Miguel Angel Gonzalez Salazar, Guillaume Becquin
  • Publication number: 20140033714
    Abstract: A regenerative thermal energy system includes a heat exchange reactor that includes a top entry portion, a lower entry portion, and a bottom discharge portion. The system also includes at least one fluid source coupled in flow communication with the at least one heat exchange reactor at the lower entry portion. The system also includes at least one cold particle storage source coupled in flow communication with the at least one heat exchange reactor at the top entry portion. The system further includes at least one thermal energy storage (TES) vessel coupled in flow communication with the heat exchange reactor at each of the bottom discharge portion and the top entry portion. The heat exchange reactor is configured to facilitate direct contact and counter-flow heat exchange between solid particles and a fluid.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: General Electric Company
    Inventors: Miguel Angel Gonzalez Salazar, Matthias Finkenrath, Mathilde Bieber
  • Publication number: 20140020388
    Abstract: In one embodiment, a power plant is provided. The power plant includes a power generation system configured to produce an exhaust; a CO2 separation system configured to receive the exhaust and configured to remove CO2 therefrom, the CO2 separation system being configured to produce a CO2 stream; a heat recovery steam generator (HRSG) operatively coupled to the power generation system and the CO2 separation system; and a CO2 compression system configured to receive the CO2 stream and configured to produce a CO2 product stream.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventors: Miguel Angel Gonzalez Salazar, Parag Prakash Kulkarni, Vittorio Michelassi
  • Publication number: 20130283852
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes cooling the gas stream in a cooling stage to form a cooled gas stream and cooling the cooled gas stream in a converging-diverging nozzle to form one or both of solid CO2 and liquid CO2. The method further includes separating at least a portion of one or both of solid CO2 and liquid CO2 from the cooled gas stream in the converging-diverging nozzle to form a CO2-rich stream and a CO2-lean gas stream. The method further includes expanding the CO2-lean gas stream in an expander downstream of the converging-diverging nozzle to form a cooled CO2-lean gas stream and circulating at least a portion of the cooled CO2-lean gas stream to the cooling stage for cooling the gas stream. Systems for separating carbon dioxide (CO2) from a CO2 stream are also provided.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nikolett Sipöcz, Jassin Marcel Fritz, Miguel Angel Gonzalez Salazar, Rene du Cauze de Nazelle, Roger Allen Shisler, Vitali Victor Lissianski, Vittorio Michelassi
  • Publication number: 20130081409
    Abstract: In accordance with one aspect of the present invention, methods of condensing carbon dioxide (CO2) from a CO2 stream are provided. The method includes (i) compressing and cooling the CO2 stream to form a partially cooled CO2 stream, wherein the partially cooled CO2 stream is cooled to a first temperature. The method includes (ii) cooling the partially cooled CO2 stream to a second temperature by magneto-caloric cooling to form a cooled CO2 stream. The method further includes (iii) condensing at least a portion of CO2 in the cooled CO2 stream to form a condensed CO2 stream.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Miguel Angel Gonzalez Salazar, Vittorio Michelassi, Christian Vogel
  • Publication number: 20130025294
    Abstract: A carbon dioxide (CO2) removal system includes an external heat transfer device. The CO2 removal system also includes a magnetocaloric heat transfer device coupled in flow communication with the external heat transfer device. The CO2 removal system further includes a cryogenic CO2 capture system coupled in flow communication with the magnetocaloric heat transfer device.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: Christian Vogel, Miguel Angel Gonzalez Salazar, Parag Prakash Kulkarni
  • Patent number: 8347629
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian Walter Freund, Clarissa Sara Katharina Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann, Roland Marquardt, Kurt Peter Moser, Stefan Martin Zunft
  • Publication number: 20130000352
    Abstract: A system comprising an air separation unit (ASU) is provided. The ASU is configured to produce liquid nitrogen and pressurize to higher pressure using a pump. ASU may be further configured to produce liquid oxygen that can be directly pressurized to be used in required applications. System may further include oxy-fuel combustion system, integrated gas turbines and integrated enhanced oil and/or gas recovery units. Methods of operating the system included.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Miguel Angel Gonzalez Salazar, Parag Prakash Kulkarni, Gregory Matthew Knott
  • Publication number: 20110289941
    Abstract: A power plant including an apparatus for regasification of liquefied natural gas (LNG) is provided. The apparatus includes a compressor configured to pressurize a working fluid and a heat recovery system configured to provide heat to a working fluid. A turbine is configured to generate work utilizing the heated working fluid. One or more heat exchangers are configured to transfer heat from the working fluid to a first stage liquefied natural gas at a first pressure and at least one of a second stage liquefied natural gas at a second pressure, and a compressed working fluid.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Miguel Angel Gonzalez Salazar, Matthias Finkenrath, Johannes Eckstein, Clarissa Sara Katharina Belloni
  • Publication number: 20110265445
    Abstract: Disclosed herein are methods for reducing CO2 emissions in an exhaust stream, and industrial plants utilizing the same. In one embodiment, a method for reducing emissions in a combustion stream, comprises: generating an exhaust stream, and compressing the stream. A first flow of the compressed exhaust stream is recycled to the generating step, and a second flow is provided to a CO2 separation system.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Cristina Botero, Matthias Finkenrath, Miguel Angel Gonzalez Salazar
  • Publication number: 20110127004
    Abstract: A system and method for a thermal energy storage system is disclosed, the thermal energy storage system comprising a plurality of pressure vessels arranged in close proximity to one another, each of the pressure vessels having a wall comprising an outer surface and an inner surface spaced from the outer surface by a respective wall thickness and surrounding an interior volume of the pressure vessel. The interior volume has a first end in fluid communication with one or more compressors and one or more turbines and a second end in fluid communication with at least one of one or more additional compressors, one or more additional turbines, and at least one compressed air storage component. The thermal energy storage system further comprises a thermal storage medium positioned in the interior volume of each of the plurality of pressure vessels.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Sebastian W. Freund, Matthias Finkenrath, Cristina Botero, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Publication number: 20110100213
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian W. Freund, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Publication number: 20110100583
    Abstract: A thermal energy storage system comprises a pressure vessel configured to withstand a first pressure, wherein the pressure vessel has a wall comprising an outer surface and an inner surface surrounding an interior volume of the pressure vessel. The interior volume of the pressure vessel has a first end in fluid communication with one or more compressors and one or more turbines, and a second end in fluid communication with at least one compressed air storage component. A thermal storage medium is positioned in the interior volume, and at least one reinforcement structure is affixed to the outer surface of the wall, wherein the at least one reinforcement structure configured to reinforce the wall to withstand a second pressure greater than the first pressure.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Inventors: Sebastian W. Freund, Matthias Finkenrath, Cristina Botero, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Publication number: 20110100010
    Abstract: An adiabatic compressed air energy storage (ACAES) system includes a compressor system, an air storage unit, and a turbine system. The ACAES system further includes a thermal energy storage (TES) system that includes a container, a plurality of heat exchangers, a liquid TES medium conduit system fluidly coupling the container to the plurality of heat exchangers, and a liquid TES medium stored within the container. The TES system also includes a plurality of pumps coupled to the liquid TES medium conduit system and configured to transport the liquid TES medium between the plurality of heat exchangers and the container, and a thermal separation system positioned within the container configured to thermally isolate a first portion of the liquid TES medium at a lower temperature from a second portion of the liquid TES medium at a higher temperature.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Sebastian W. Freund, Matthias Finkenrath, Cristina Botero, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann