Patents by Inventor Miguel Sainz Serra

Miguel Sainz Serra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230130814
    Abstract: In examples, autonomous vehicles are enabled to negotiate yield scenarios in a safe and predictable manner. In response to detecting a yield scenario, a wait element data structure is generated that encodes geometries of an ego path, a contender path that includes at least one contention point with the ego path, as well as a state of contention associated with the at least on contention point. Geometry of yield scenario context may also be encoded, such as inside ground of an intersection, entry or exit lines, etc. The wait element data structure is passed to a yield planner of the autonomous vehicle. The yield planner determines a yielding behavior for the autonomous vehicle based at least on the wait element data structure. A control system of the autonomous vehicle may operate the autonomous vehicle in accordance with the yield behavior, such that the autonomous vehicle safely negotiates the yield scenario.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 27, 2023
    Inventors: David Nister, Minwoo Park, Miguel Sainz Serra, Vaibhav Thukral, Berta Rodriguez Hervas
  • Publication number: 20210253128
    Abstract: Embodiments of the present disclosure relate to behavior planning for autonomous vehicles. The technology described herein selects a preferred trajectory for an autonomous vehicle based on an evaluation of multiple hypothetical trajectories by different components within a planning system. The various components provide an optimization score for each trajectory according to the priorities of the component and scores from multiple components may form a final optimization score. This scoring system allows the competing priorities (e.g., comfort, minimal travel time, fuel economy) of different components to be considered together. In examples, the trajectory with the best combined score may be selected for implementation. As such, an iterative approach that evaluates various factors may be used to identify an optimal or preferred trajectory for an autonomous vehicle when navigating an environment.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 19, 2021
    Inventors: David Nister, Yizhou Wang, Julia Ng, Rotem Aviv, Seungho Lee, Joshua John Bialkowski, Hon Leung Lee, Hermes Lanker, Raul Correal Tezanos, Zhenyi Zhang, Nikolai Smolyanskiy, Alexey Kamenev, Ollin Boer Bohan, Anton Vorontsov, Miguel Sainz Serra, Birgit Henke
  • Publication number: 20210241004
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Publication number: 20210241005
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Patent number: 10997435
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: May 4, 2021
    Assignee: NVIDIA Corporation
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Publication number: 20210042535
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister