Patents by Inventor Mihai Duduta
Mihai Duduta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12368157Abstract: Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.Type: GrantFiled: May 26, 2022Date of Patent: July 22, 2025Assignee: 24M Technologies, Inc.Inventors: Tristan Doherty, Pimpa Limthongkul, Asli Butros, Mihai Duduta, James C. Cross, III
-
Patent number: 12272818Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: GrantFiled: September 25, 2023Date of Patent: April 8, 2025Assignees: Kyocera CorporationInventors: Naoki Ota, Mihai Duduta, Takaaki Fukushima, Hiuling Zoe Yu, Taison Tan, Hiromitsu Mishima
-
Patent number: 12193334Abstract: In some embodiments, a dielectric elastomer device may include at least first and second dielectric elastomer layers, and a first layer of conductive particles disposed between the first and second dielectric elastomer layers and forming a first electrode of the device, wherein portions of the second dielectric elastomer layer are directly bonded with portions of the first dielectric elastomer layer through the first layer of the conductive particles. The dielectric elastomer layer may, for example, comprise a cured acrylic elastomer precursor with an additive including urethane, polybutadiene, or silicone. Electrodes in different layers may be interconnected by infusing a liquid or semi-liquid conductive material in contact with each of a plurality of the electrodes of the actuator or sensor device, and solidifying the conductive material to form a conductive path that interconnects the plurality of electrodes.Type: GrantFiled: March 20, 2017Date of Patent: January 7, 2025Assignee: President and Fellows of Harvard CollegeInventors: Mihai Duduta, David Clarke, Robert J. Wood
-
Patent number: 12095025Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.Type: GrantFiled: June 15, 2022Date of Patent: September 17, 2024Assignee: 24M Technologies, Inc.Inventors: Taison Tan, Yet-Ming Chiang, Naoki Ota, Throop Wilder, Mihai Duduta
-
Publication number: 20240234705Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: ApplicationFiled: September 25, 2023Publication date: July 11, 2024Inventors: Naoki OTA, Mihai DUDUTA, Takaaki FUKUSHIMA, Hiuling Zoe YU, Taison TAN, Hiromitsu MISHIMA
-
Publication number: 20240063417Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.Type: ApplicationFiled: September 29, 2023Publication date: February 22, 2024Applicant: 24M Technologies, Inc.Inventors: Yet-Ming CHIANG, Mihai DUDUTA, Richard K. HOLMAN, Pimpa LIMTHONGKUL, Taison TAN
-
Patent number: 11909077Abstract: Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.Type: GrantFiled: April 22, 2022Date of Patent: February 20, 2024Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Yet-Ming Chiang, William Craig Carter, Mihai Duduta, Pimpa Limthongkul
-
Patent number: 11888144Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.Type: GrantFiled: March 1, 2022Date of Patent: January 30, 2024Assignee: 24M Technologies, Inc.Inventors: Alexander H. Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
-
Patent number: 11811119Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cells includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.Type: GrantFiled: April 26, 2021Date of Patent: November 7, 2023Assignee: 24M Technologies, Inc.Inventors: Yet-Ming Chiang, Mihai Duduta, Richard K. Holman, Pimpa Limthongkul, Taison Tan
-
Patent number: 11804595Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: GrantFiled: October 16, 2019Date of Patent: October 31, 2023Assignees: 24M Technologies, Inc., Kyocera CorporationInventors: Naoki Ota, Mihai Duduta, Takaaki Fukushima, Hiuling Zoe Yu, Taison Tan, Hiromitsu Mishima
-
Publication number: 20230085181Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.Type: ApplicationFiled: June 15, 2022Publication date: March 16, 2023Applicant: 24M Technologies, Inc.Inventors: Taison TAN, Yet-Ming CHIANG, Naoki OTA, Throop WILDER, Mihai DUDUTA
-
Publication number: 20230018078Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.Type: ApplicationFiled: March 1, 2022Publication date: January 19, 2023Applicant: 24M Technologies, Inc.Inventors: Alexander H. SLOCUM, Tristan DOHERTY, Ricardo BAZZARELLA, James C. CROSS, III, Pimpa LIMTHONGKUL, Mihai DUDUTA, Jeffry DISKO, Allen YANG, Throop WILDER, William Craig CARTER, Yet-Ming CHIANG
-
Publication number: 20220285669Abstract: Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.Type: ApplicationFiled: May 26, 2022Publication date: September 8, 2022Applicant: 24M Technologies, Inc.Inventors: Tristan DOHERTY, Pimpa LIMTHONGKUL, Asli BUTROS, Mihai DUDUTA, James C. CROSS, III
-
Publication number: 20220263104Abstract: Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.Type: ApplicationFiled: April 22, 2022Publication date: August 18, 2022Inventors: Yet-Ming CHIANG, William Craig CARTER, Mihai DUDUTA, Pimpa LIMTHONGKUL
-
Patent number: 11394049Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.Type: GrantFiled: February 23, 2021Date of Patent: July 19, 2022Assignee: 24M Technologies, Inc.Inventors: Taison Tan, Yet-Ming Chiang, Naoki Ota, Throop Wilder, Mihai Duduta
-
Patent number: 11342567Abstract: Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.Type: GrantFiled: January 18, 2019Date of Patent: May 24, 2022Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Yet-Ming Chiang, William Craig Carter, Mihai Duduta, Pimpa Limthongkul
-
Patent number: 11309531Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.Type: GrantFiled: January 7, 2020Date of Patent: April 19, 2022Assignee: 24M Technologies, Inc.Inventors: Alexander H. Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
-
Publication number: 20220021019Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.Type: ApplicationFiled: February 23, 2021Publication date: January 20, 2022Applicant: 24M Technologies, Inc.Inventors: Taison TAN, Yet-Ming CHIANG, Naoki OTA, Throop WILDER, Mihai DUDUTA
-
Publication number: 20210249678Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.Type: ApplicationFiled: April 26, 2021Publication date: August 12, 2021Applicant: 24M Technologies, Inc.Inventors: Yet-Ming CHIANG, Mihai DUDUTA, Richard K. HOLMAN, Pimpa LIMTHONGKUL, Taison TAN
-
Patent number: 11018365Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.Type: GrantFiled: October 8, 2019Date of Patent: May 25, 2021Assignee: 24M Technologies, Inc.Inventors: Yet-Ming Chiang, Mihai Duduta, Richard K. Holman, Pimpa Limthongkul, Taison Tan