Patents by Inventor Mihail D. MIHAYLOV

Mihail D. MIHAYLOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9846088
    Abstract: Disclosed is a method and apparatus for measuring semiconductor substrate temperature using a differential acoustic time of flight measurement technique. The measurement is based on measuring the time of flight of acoustic (ultrasonic) waves across the substrate, and calculating a substrate temperature from the measured time of flight and the known temperature dependence of the speed of sound for the substrate material. The differential acoustic time of flight method eliminates most sources of interference and error, for example due to varying coupling between an ultrasonic transducer and the substrate. To further increase the accuracy of the differential acoustic time of flight measurement, a correlation waveform processing algorithm is utilized to obtain a differential acoustic time of flight measurement from two measured ultrasonic waveforms. To facilitate signal recognition and processing, a symmetric Lamb mode may be used as mode of excitation of the substrate.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: December 19, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Jun Pei, Junwei Bao, Holger Tuitje, Ching-Ling Meng, Mihail D. Mihaylov
  • Publication number: 20150078416
    Abstract: Disclosed is a method and apparatus for measuring semiconductor substrate temperature using a differential acoustic time of flight measurement technique. The measurement is based on measuring the time of flight of acoustic (ultrasonic) waves across the substrate, and calculating a substrate temperature from the measured time of flight and the known temperature dependence of the speed of sound for the substrate material. The differential acoustic time of flight method eliminates most sources of interference and error, for example due to varying coupling between an ultrasonic transducer and the substrate. To further increase the accuracy of the differential acoustic time of flight measurement, a correlation waveform processing algorithm is utilized to obtain a differential acoustic time of flight measurement from two measured ultrasonic waveforms. To facilitate signal recognition and processing, a symmetric Lamb mode may be used as mode of excitation of the substrate.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Jun PEI, Junwei BAO, Holger TUITJE, Ching-Ling MENG, Mihail D. MIHAYLOV