Patents by Inventor Mihails Kusnezoff

Mihails Kusnezoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140291151
    Abstract: The invention relates to a method of producing solid oxide fuel cells (SOFC) having a cathode-electrolyte-anode unit supported by a metal substrate. It is the object of the invention in this respect to provide solid oxide fuel cells which achieve an increased strength, improved temperature change resistance, a secure bonding of films forming the cathode-electrolyte-anode unit and can be produced free of distortion and reproducibly. In the method in accordance with the invention, a film forming the anode is first wet chemically applied to a surface of a porous metallic substrate as a carrier of the cathode-electrolyte-anode unit. An element which has already been sintered gas tight in advance and which forms the electrolyte is then placed on or applied a really to this film forming the anode and at a first thermal treatment up to a maximum temperature of 1250° C.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 2, 2014
    Applicants: Technische Universitat Dresden, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Mihails Kusnezoff, Nikolai Trofimenko, Egle Dietzen, Chriffe Belda
  • Patent number: 8828623
    Abstract: The invention relates to a contact element for an electrically conductive connection between an anode and an interconnector of a high-temperature fuel cell. It is the object of the invention to achieve a more reliable electrically conductive connection with long-term stability between an anode and the associated interconnector of a high-temperature fuel cell. The contact element in accordance with the invention is arranged between an anode and an interconnector of a high-temperature fuel cell. It is formed with two areal electrically conductive part elements. In this respect, one respective part element is in touching contact with the anode and the other part element is in touching contact with the respective interconnector. Openings are formed in the part elements and the part elements are formed from materials having mutually different coefficients of thermal expansion.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 9, 2014
    Assignee: Plansee SE
    Inventors: Ulf Waeschke, Mihails Kusnezoff
  • Publication number: 20140023957
    Abstract: The invention relates to a layer structure which is formed between an interconnect and a cathode of a solid oxide fuel cell and can be used for forming a ceramic layer structure between an interconnect and a cathode. In this respect, the interconnect comprises a metal alloy containing chromium. The object of the present invention is to provide a layer structure between an interconnect and a cathode of a solid oxide fuel cell with which a good protective function (from corrosion and from chromium vaporization), a high electrical conductivity and also a good thermal expansion behavior adapted to the materials of an interconnect and of a cathode can be achieved. The layer structure in the green state is formed by a powdery spinel as well as at least one of the below-named metal oxides CuO, NiO, CoOx and MnOx as a sintering additive and at least one powdery perovskite.
    Type: Application
    Filed: February 14, 2012
    Publication date: January 23, 2014
    Applicants: Fraunhofer-Gesellschaft Zur Foerderubg Der Angewandten Forschung E.V., Plansee SE
    Inventors: Marco Brandner, Johannes Schmid, Andreas Venskutonis, Nikolai Trofimenko, Viktar Sauchuk, Mihails Kusnezoff, Karin Lucke, Alexander Michaelis
  • Patent number: 8618018
    Abstract: The invention relates to catalytically active components for thermal ionization detectors for the detection of compounds containing halogen which have an improved structure as well as to a manufacturing method for an oxide ceramic sintering material for the components. It is the object of the invention to manufacture catalytically active components for thermal ionization detectors for gas chromatographic applications which are thermally, mechanically and chemically stable in the long term and which have increased sensitivity to the materials to be detected. In this respect, the sintering material should be adjustable in a controllable manner in the ideal parameter required for the detector. It is proposed in accordance with the invention to use an oxide ceramic sintering material for the components which comprises a crystalline phase and an amorphous glass phase, with it being essential to the invention that the amorphous glass phase is formed with 0.1 to 20% by weight of a cesium compound.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Viktar Sauchuk, Peter Otschik, Klaus Eichler, Mihails Kusnezoff
  • Patent number: 8512901
    Abstract: The invention relates to a high-temperature fuel cell system which can be operated with at least one hydrocarbon compound, preferably with methane or a gas containing methane such as natural gas or biogas. It is the object of the invention to increase the efficiency of high-temperature fuel cell systems and to allow a more flexible operation. In the system in accordance with the invention, individual fuel cells are present which are connected electrically in series and form the stacks.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: August 20, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Mihails Kusnezoff, Sebastian Reuber
  • Patent number: 8368411
    Abstract: The invention relates to a method for the determination of diffusion coefficients and/or exchange coefficient of a material having electronic and ionic conductivity. The material is permeable to at least one gas. It is the object of the invention to provide a cost-effective, accurate method for the determination of the diffusion coefficient and of the surface exchange coefficient which can be carried out in a short time and can thus be used for a screening of materials, in particular for application in the field of permeation membranes. The procedure is followed in accordance with the invention such that a sample of the material is arranged in a measurement chamber and has an electric current passed through it for a determination of the electric resistance. In this respect, a gas mixture in which the respective gas is contained is conducted through the measurement chamber as a gas flow and the partial pressure of the respective gas in the gas mixture is changed periodically at regular intervals.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: February 5, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V
    Inventors: Mihails Kusnezoff, Steffen Ziesche, Anne Paepke
  • Patent number: 8366972
    Abstract: The invention relates to a material for the formation of protective layers resistant to high temperatures on chromium oxide forming substrates, to a manufacturing method and to a use of these materials. It is suitable for a use as a chromium evaporation layer for metallic alloys containing chromium in the high temperature range. It is the object of the invention to provide a material for applications as a protective layer for chromium oxide forming alloys of high temperature resistance which is thermally and mechanically permanently stable and ensures a high electrical conductivity at the operating temperature of the fuel cell. In accordance with the invention, the material is formed from a spinel phase and an oxidic secondary phase which is preferably formed with an oxidic compound containing manganese.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 5, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Mihails Kusnezoff, Viktar Sauchuk, Nikolai Trofimenko
  • Publication number: 20120135336
    Abstract: The invention relates to a contact element for an electrically conductive connection between an anode and an interconnector of a high-temperature fuel cell. It is the object of the invention to achieve a more reliable electrically conductive connection with long-term stability between an anode and the associated interconnector of a high-temperature fuel cell. The contact element in accordance with the invention is arranged between an anode and an interconnector of a high-temperature fuel cell. It is formed with two areal electrically conductive part elements. In this respect, one respective part element is in touching contact with the anode and the other part element is in touching contact with the respective interconnector. Openings are formed in the part elements and the part elements are formed from materials having mutually different coefficients of thermal expansion.
    Type: Application
    Filed: February 26, 2010
    Publication date: May 31, 2012
    Applicant: Plansee SE
    Inventors: Ulf Waeschke, Mihails Kusnezoff
  • Publication number: 20100207646
    Abstract: The invention relates to a method for the determination of diffusion coefficients and/or exchange coefficient of a material having electronic and ionic conductivity. The material is permeable to at least one gas. It is the object of the invention to provide a cost-effective, accurate method for the determination of the diffusion coefficient and of the surface exchange coefficient which can be carried out in a short time and can thus be used for a screening of materials, in particular for application in the field of permeation membranes. The procedure is followed in accordance with the invention such that a sample of the material is arranged in a measurement chamber and has an electric current passed through it for a determination of the electric resistance. In this respect, a gas mixture in which the respective gas is contained is conducted through the measurement chamber as a gas flow and the partial pressure of the respective gas in the gas mixture is changed periodically at regular intervals.
    Type: Application
    Filed: July 28, 2008
    Publication date: August 19, 2010
    Inventors: Mihails Kusnezoff, Steffen Ziesche, Anne Paepke
  • Publication number: 20100120611
    Abstract: The invention relates to catalytically active components for thermal ionization detectors for the detection of compounds containing halogen which have an improved structure as well as to a manufacturing method for an oxide ceramic sintering material for the components. It is the object of the invention to manufacture catalytically active components for thermal ionization detectors for gas chromatographic applications which are thermally, mechanically and chemically stable in the long term and which have increased sensitivity to the materials to be detected. In this respect, the sintering material should be adjustable in a controllable manner in the ideal parameter required for the detector. It is proposed in accordance with the invention to use an oxide ceramic sintering material for the components which comprises a crystalline phase and an amorphous glass phase, with it being essential to the invention that the amorphous glass phase is formed with 0.1 to 20% by weight of a cesium compound.
    Type: Application
    Filed: July 30, 2007
    Publication date: May 13, 2010
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Viktar Sauchuk, Peter Otschik, Klaus Eichler, Mihails Kusnezoff
  • Publication number: 20100108953
    Abstract: The invention relates to a material for the formation of protective layers resistant to high temperatures on chromium oxide forming substrates, to a manufacturing method and to a use of these materials. It is suitable for a use as a chromium evaporation layer for metallic alloys containing chromium in the high temperature range. It is the object of the invention to provide a material for applications as a protective layer for chromium oxide forming alloys of high temperature resistance which is thermally and mechanically permanently stable and ensures a high electrical conductivity at the operating temperature of the fuel cell. In accordance with the invention, the material is formed from a spinel phase and an oxidic secondary phase which is preferably formed with an oxidic compound containing manganese.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 6, 2010
    Applicant: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Mihails Kusnezoff, Viktar Sauchuk, Nikolai Trofimenko
  • Publication number: 20100068602
    Abstract: The invention relates to a sealing for the gas-tight connection of two elements of a fuel cell stack comprising an electrically non-conducting spacer component and at least one solder component solid or viscous over its entire extension at the operating temperature of the fuel cell stack and coupling the spacer component to at least one of the elements to be connected of the fuel cell stack in a gas-tight manner. According to the invention it is envisaged that the spacer component is formed of a ceramic material. The invention further relates to a fuel cell stack in which, according to the invention, it is envisaged that a distribution of forces compressing the fuel cell stack in the axial direction is directly transmitted to at least one of the elements to be connected by the spacer component. The invention further relates to production methods for seals and fuel cell stacks.
    Type: Application
    Filed: November 5, 2007
    Publication date: March 18, 2010
    Applicant: Staxera GMBH
    Inventors: Christian Wunderlich, Andreas Reinert, Karl-Hermann Bucher, Ralf Otterstedt, Hans-Peter Baldus, Michael Stelter, Axel Rost, Mihails Kusnezoff
  • Publication number: 20090325023
    Abstract: The present invention relates to a repetition unit for a stack of electrochemical cells comprising a cathode-electrolyte-anode unit as well as a first layer and at least one further layer of an interconnector plate contacting it, wherein the first layer is made from sheet metal and is in electrical contact with the cathode-electrolyte-anode unit, while the at least one further layer is omitted in an active region, wherein furthermore the at least one further layer comprises an unshaped planar material and the first layer is also unshaped in a marginal region surrounding the active region and the cathode-electrolyte-anode unit and wherein all the named layers of the interconnector plate are soldered to one another in the marginal region. The invention furthermore relates to a corresponding stack arrangement of electrochemical cells as well as to a method for the manufacture of such a repetition unit.
    Type: Application
    Filed: August 23, 2007
    Publication date: December 31, 2009
    Inventors: Mihails Kusnezoff, Alexander Michaels, Michael Stelter
  • Publication number: 20080318091
    Abstract: The invention relates to a method and to a system of operating a high-temperature fuel cell. At least one fuel cell, a reformer, an afterburner and a heat exchanger are present in the system. The total efficiency should be increased with the invention in accordance with the object set. In accordance with the invention, for this purpose, fresh air supplied to the fuel cell(s) at the cathode side is preheated in multiple stages by heat from the afterburning and from the heated air dissipated from the fuel cell(s) at the cathode side by means of a high-temperature heat exchanger.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 25, 2008
    Inventors: Mihails Kusnezoff, Wieland Beckert, Ivanka Milcheva, Michael Stelter, Ulf Waeschke