Patents by Inventor Mihika PRABHU

Mihika PRABHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240248260
    Abstract: Provided herein are optical flow switches, and optical flow switch packages, implemented using photonic switches. The optical flow switch includes a network of photonic switches arranged between input and output ports of the optical flow switch. The network of photonic switches spans two or more reticles, and the two or more reticles may include photonic switching arrangements corresponding to repeated reticle masks or sets of reticle masks. The optical flow switch may be mounted to a glass substrate to form an optical flow switch package.
    Type: Application
    Filed: January 19, 2024
    Publication date: July 25, 2024
    Applicant: Lightmatter, Inc.
    Inventors: Mihika Prabhu, Alexander Sludds, Aravind Kalaiah, Ajay Joshi, Bradford Turcott, Robert Turner, Nicholas C. Harris, Darius Bunandar
  • Patent number: 11914415
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: February 27, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Dirk Englund, Nicholas C. Harris
  • Publication number: 20230045938
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: May 4, 2022
    Publication date: February 16, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Jacques Johannes CAROLAN, Mihika PRABHU, Scott A. SKIRLO, Yichen Shen, Marin SOLJACIC, DIRK ENGLUND, Nicholas C. HARRIS
  • Patent number: 11334107
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: May 17, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Dirk Englund, Nicholas Christopher Harris
  • Publication number: 20220043323
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 10, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, DIRK ENGLUND, Mihika PRABHU
  • Patent number: 11175562
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 16, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott A. Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Englund, Mihika Prabhu
  • Publication number: 20200379504
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: August 6, 2020
    Publication date: December 3, 2020
    Inventors: Jacques Johannes CAROLAN, Mihika PRABHU, Scott A. SKIRLO, Yichen Shen, Marin SOLJACIC, DIRK ENGLUND, Nicholas Christopher HARRIS
  • Publication number: 20200333683
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 22, 2020
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, DIRK ENGLUND, Mihika PRABHU
  • Patent number: 10768659
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 8, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Nicholas Christopher Harris, Dirk Englund
  • Patent number: 10649306
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 12, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott A. Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20190294199
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: February 12, 2019
    Publication date: September 26, 2019
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Nicholas Christopher Harris, Dirk Englund
  • Publication number: 20190265574
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, Dirk Robert ENGLUND, Mihika PRABHU
  • Patent number: 10268232
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 23, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas Christopher Harris, Jacques Johannes Carolan, Mihika Prabhu, Dirk Robert Englund, Scott A. Skirlo, Yichen Shen, Marin Soljacic
  • Patent number: 10261389
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20170371227
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Scott SKIRLO, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20170351293
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Jacques Johannes Carolan, Mihika PRABHU, Scott SKIRLO, Yichen SHEN, Marin SOLJACIC, Nicholas Christopher HARRIS, Dirk Robert ENGLUND