Patents by Inventor Mihir Oka
Mihir Oka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12176318Abstract: An apparatus comprising a bonding nozzle that has one or more channels in a bonding surface. The one or more channels comprise a first channel portion in an inner region of the bonding surface and a second channel portion along an outer periphery of the bonding surface. The one or more channels are in fluid communication with a vacuum port. A vacuum relief conduit within the bonding nozzle comprises a first opening into the second channel portion along the outer periphery of the bonding surface, and a second opening along an exterior wall of the bonding nozzle.Type: GrantFiled: April 3, 2023Date of Patent: December 24, 2024Assignee: Intel CorporationInventors: Mihir Oka, Kartik Srinivasan, Wei Tan, James Mellody
-
Publication number: 20240186280Abstract: The present disclosure is directed to an apparatus having a bond head configured to heat and compress a semiconductor package assembly, and a bonding stage configured to hold the semiconductor package assembly, wherein the bonding stage comprises a ceramic material including silicon and either magnesium or indium.Type: ApplicationFiled: December 1, 2022Publication date: June 6, 2024Inventors: Minglu LIU, Andrey GUNAWAN, Gang DUAN, Edvin CETEGEN, Yuting WANG, Mine KAYA, Kartik SRINIVASAN, Mihir OKA, Anurag TRIPATHI
-
Publication number: 20230238352Abstract: An apparatus comprising a bonding nozzle that has one or more channels in a bonding surface. The one or more channels comprise a first channel portion in an inner region of the bonding surface and a second channel portion along an outer periphery of the bonding surface. The one or more channels are in fluid communication with a vacuum port. A vacuum relief conduit within the bonding nozzle comprises a first opening into the second channel portion along the outer periphery of the bonding surface, and a second opening along an exterior wall of the bonding nozzle.Type: ApplicationFiled: April 3, 2023Publication date: July 27, 2023Applicant: Intel CorporationInventors: Mihir Oka, Kartik Srinivasan, Wei Tan, James Mellody
-
Patent number: 11652080Abstract: An apparatus comprising a bonding nozzle that has one or more channels in a bonding surface. The one or more channels comprise a first channel portion in an inner region of the bonding surface and a second channel portion along an outer periphery of the bonding surface. The one or more channels are in fluid communication with a vacuum port. A vacuum relief conduit within the bonding nozzle comprises a first opening into the second channel portion along the outer periphery of the bonding surface, and a second opening along an exterior wall of the bonding nozzle.Type: GrantFiled: May 27, 2021Date of Patent: May 16, 2023Assignee: Intel CorporationInventors: Mihir Oka, Kartik Srinivasan, Wei Tan, James Mellody
-
Publication number: 20210288021Abstract: An apparatus comprising a bonding nozzle that has one or more channels in a bonding surface. The one or more channels comprise a first channel portion in an inner region of the bonding surface and a second channel portion along an outer periphery of the bonding surface. The one or more channels are in fluid communication with a vacuum port. A vacuum relief conduit within the bonding nozzle comprises a first opening into the second channel portion along the outer periphery of the bonding surface, and a second opening along an exterior wall of the bonding nozzle.Type: ApplicationFiled: May 27, 2021Publication date: September 16, 2021Applicant: Intel CorporationInventors: Mihir Oka, Kartik Srinivasan, Wei Tan, James Mellody
-
Patent number: 10546823Abstract: Described is an apparatus which comprises: a die having a first side and a second side opposite to the first side; a die backside film (DBF) or die attach film (DAF) disposed over the first side of the die; and a fluorocarbon layer disposed over the DBF or DAF. Described is a method which comprises: applying a die backside film (DBF) over a first side of a die, wherein the die has a second side which metal bumps; and applying a plasma polymerization process to treat the DBF with a fluorocarbon plasma.Type: GrantFiled: November 13, 2015Date of Patent: January 28, 2020Assignee: Intel CorporationInventors: Balu Pathangey, Mihir A. Oka, Andrew Proctor
-
Patent number: 10515914Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.Type: GrantFiled: January 29, 2019Date of Patent: December 24, 2019Assignee: Intel CorporationInventors: Mihir A. Oka, Ken P. Hackenberg, Vijay Krishnan (Vijay) Subramanian, Neha M. Patel, Nachiket R. Raravikar
-
Publication number: 20190157225Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.Type: ApplicationFiled: January 29, 2019Publication date: May 23, 2019Inventors: Mihir A. OKA, Ken P. HACKENBERG, Vijay Krishnan (Vijay) SUBRAMANIAN, Neha M. PATEL, Nachiket R. RARAVIKAR
-
Patent number: 10224299Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.Type: GrantFiled: December 29, 2016Date of Patent: March 5, 2019Assignee: Intel CorporationInventors: Mihir A. Oka, Ken P. Hackenberg, Vijay Krishnan (Vijay) Subramanian, Neha M. Patel, Nachiket R. Raravikar
-
Publication number: 20190067213Abstract: Described is an apparatus which comprises: a die having a first side and a second side opposite to the first side; a die backside film (DBF) or die attach film (DAF) disposed over the first side of the die; and a fluorocarbon layer disposed over the DBF or DAF. Described is a method which comprises: applying a die backside film (DBF) over a first side of a die, wherein the die has a second side which metal bumps; and applying a plasma polymerization process to treat the DBF with a fluorocarbon plasma.Type: ApplicationFiled: November 13, 2015Publication date: February 28, 2019Applicant: INTEL CORPORATIONInventors: Balu Pathangey, Mihir A. Oka, Andrew Proctor
-
Publication number: 20180315731Abstract: Described is an apparatus which comprises: a die with a first side; a plurality of metal bumps on the first side of the die; a plurality of solders disposed on the plurality of metal bumps; and a patterned printable resist disposed next to at least one of the solders of the plurality of solders. Described is a method which comprises: printing a photoresist ink onto a bumped wafer surface; thermally or Ultra-Violet curing the photoresist ink; and printing or electroplating solder(s) onto the bumped wafer surface. Described is a machine readable storage media having one or more instructions that when executed cause a machine to perform an operations according to the method described above.Type: ApplicationFiled: December 4, 2015Publication date: November 1, 2018Applicant: INTEL CORPORATIONInventors: Kosuke Hirota, Mihir Oka
-
Publication number: 20180190604Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.Type: ApplicationFiled: December 29, 2016Publication date: July 5, 2018Inventors: Mihir A. OKA, Ken P. HACKENBERG, Vijay Krishnan (Vijay) SUBRAMANIAN, Neha M. PATEL, Nachiket R. RARAVIKAR
-
Patent number: 9859248Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.Type: GrantFiled: June 29, 2016Date of Patent: January 2, 2018Assignee: INTEL CORPORATIONInventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Jr., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
-
Patent number: 9659889Abstract: This disclosure relates generally to generating a solder-on-die using a water-soluble resist, system, and method. Heat may be applied to solder as applied to a hole formed in a water-soluble resist coating, the water-soluble resist coating being on a surface of an initial assembly. The initial assembly may include an electronic component. The surface may be formed, at least in part, by an electrical terminal of the electronic component, the hole being aligned, at least in part, with the electrical terminal. The solder may be reflowed, wherein the solder couples, at least in part, with the electrical terminal.Type: GrantFiled: December 20, 2013Date of Patent: May 23, 2017Assignee: Intel CorporationInventors: Mihir Oka, Xavier Brun, Dingying David Xu, Edward Prack, Kabirkumar Mirpuri, Saikumar Jayaraman
-
Publication number: 20170033069Abstract: Techniques are disclosed for protecting a surface using a dry-removable protective coating that does not require chemical solutions to be removed. In an embodiment, a protective layer is disposed on a surface. The protective layer is composed of one layer that adheres to the surface. The surface is then processed while the protective coating is on the surface. Thereafter, the protective layer is removed from the surface by separating the protective layer away from the surface without the use of chemical solutions.Type: ApplicationFiled: October 17, 2016Publication date: February 2, 2017Inventors: Mihir A. Oka, Edward R. PRACK, Dingying XU, Saikumar JAYARAMAN
-
Patent number: 9530718Abstract: A die backside film including a matrix material; and an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles. A method including introducing a die backside film on a backside surface of a die, the die backside film including a matrix material including an elastomer an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles; and disposing the die in a package.Type: GrantFiled: December 26, 2012Date of Patent: December 27, 2016Assignee: Intel CorporationInventors: Hitesh Arora, Mihir A. Oka, Chandra M. Jha
-
Publication number: 20160307869Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.Type: ApplicationFiled: June 29, 2016Publication date: October 20, 2016Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, JR., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
-
Patent number: 9472517Abstract: Techniques are disclosed for protecting a surface using a dry-removable protective coating that does not require chemical solutions to be removed. In an embodiment, a protective layer is disposed on a surface. The protective layer is composed of one layer that adheres to the surface. The surface is then processed while the protective coating is on the surface. Thereafter, the protective layer is removed from the surface by separating the protective layer away from the surface without the use of chemical solutions.Type: GrantFiled: March 18, 2014Date of Patent: October 18, 2016Assignee: Intel CorporationInventors: Mihir A. Oka, Edward R. Prack, Dingying Xu, Saikumar Jayaraman
-
Patent number: 9412702Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.Type: GrantFiled: March 14, 2013Date of Patent: August 9, 2016Assignee: Intel CorporationInventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
-
Publication number: 20150270235Abstract: Techniques are disclosed for protecting a surface using a dry-removable protective coating that does not require chemical solutions to be removed. In an embodiment, a protective layer is disposed on a surface. The protective layer is composed of one layer that adheres to the surface. The surface is then processed while the protective coating is on the surface. Thereafter, the protective layer is removed from the surface by separating the protective layer away from the surface without the use of chemical solutions.Type: ApplicationFiled: March 18, 2014Publication date: September 24, 2015Inventors: Mihir A. Oka, Edward R. Prack, Dingying Xu, Saikumar Jayaraman