Patents by Inventor Miho Funaki

Miho Funaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891434
    Abstract: An objective of the present invention is to provide methods for promoting antigen uptake into cells by antigen-binding molecules, methods for increasing the number of times of antigen binding by one antigen-binding molecule, methods for promoting reduction of the antigen concentration in plasma by administering antigen-binding molecules, and methods for improving the plasma retention of an antigen-binding molecule, as well as antigen-binding molecules that allow enhanced antigen uptake into cells, antigen-binding molecules having an increased number of times of antigen binding, antigen-binding molecules that can promote reduction of the antigen concentration in plasma when administered, antigen-binding molecules with improved plasma retention, pharmaceutical compositions comprising the above antigen-binding molecules, and methods for producing them. The present inventors revealed that the above objective can be achieved by using antigen-binding molecules that show calcium-dependent antigen-antibody reaction.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: February 6, 2024
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Atsuhiko Maeda, Junichi Nezu, Yoshinao Ruike, Takeshi Baba, Shun Shimizu
  • Publication number: 20240018503
    Abstract: The present invention provides a method for improving or controlling the plasma half-life and/or bio-availability of blood coagulation factor IX (FIX), the method comprising modifying the GLA domain. Examples of such modifications include: (i) non-covalent bonding of a GLA-domain-recognizing antibody or an antibody fragment thereof to the GLA domain; (ii) reduced number of Gla residues in the GLA domain, in comparison to that of a native FIX; (iii) either or both of deletion of one or more glutamic acid residues in the GLA domain and substitution of one or more glutamic acid residues in the GLA domain with another amino acid; and (iv) deletion of a part or all of the GLA domain. The present invention also provides a FIX with improved pharmacokinetics which carries such modifications, a pharmaceutical composition containing the FIX as an active ingredient, a method for producing the FIX, and such.
    Type: Application
    Filed: August 11, 2023
    Publication date: January 18, 2024
    Inventors: Tomoyuki IGAWA, Miho FUNAKI, Hiroyuki MIYASHITA
  • Publication number: 20220187308
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 16, 2022
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki IGAWA, Shinya ISHII, Miho FUNAKI, Naoka HIRONIWA, Shun SHIMIZU
  • Patent number: 11243210
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: February 8, 2022
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Shun Shimizu
  • Publication number: 20200109390
    Abstract: The present invention provides a method for improving or controlling the plasma half-life and/or bio-availability of blood coagulation factor IX (FIX), the method comprising modifying the GLA domain. Examples of such modifications include: (i) non-covalent bonding of a GLA-domain-recognizing antibody or an antibody fragment thereof to the GLA domain; (ii) reduced number of Gla residues in the GLA domain, in comparison to that of a native FIX; (iii) either or both of deletion of one or more glutamic acid residues in the GLA domain and substitution of one or more glutamic acid residues in the GLA domain with another amino acid; and (iv) deletion of a part or all of the GLA domain. The present invention also provides a FIX with improved pharmacokinetics which carries such modifications, a pharmaceutical composition containing the FIX as an active ingredient, a method for producing the FIX, and such.
    Type: Application
    Filed: April 26, 2018
    Publication date: April 9, 2020
    Inventors: Tomoyuki IGAWA, Miho FUNAKI, Hiroyuki MIYASHITA
  • Publication number: 20190041396
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Application
    Filed: June 18, 2018
    Publication date: February 7, 2019
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki IGAWA, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Shun Shimizu
  • Publication number: 20180258161
    Abstract: An objective of the present invention is to provide methods for promoting antigen uptake into cells by antigen-binding molecules, methods for increasing the number of times of antigen binding by one antigen-binding molecule, methods for promoting reduction of the antigen concentration in plasma by administering antigen-binding molecules, and methods for improving the plasma retention of an antigen-binding molecule, as well as antigen-binding molecules that allow enhanced antigen uptake into cells, antigen-binding molecules having an increased number of times of antigen binding, antigen-binding molecules that can promote reduction of the antigen concentration in plasma when administered, antigen-binding molecules with improved plasma retention, pharmaceutical compositions comprising the above antigen-binding molecules, and methods for producing them. The present inventors revealed that the above objective can be achieved by using antigen-binding molecules that show calcium-dependent antigen-antibody reaction.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 13, 2018
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Atsuhiko Maeda, Junichi Nezu, Yoshinao Ruike, Takeshi Baba, Shun Shimizu
  • Patent number: 10024867
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 17, 2018
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Shun Shimizu
  • Publication number: 20140271617
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 18, 2014
    Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Shun Shimizu
  • Publication number: 20140234340
    Abstract: An objective of the present invention is to provide methods for promoting antigen uptake into cells by antigen-binding molecules, methods for increasing the number of times of antigen binding by one antigen-binding molecule, methods for promoting reduction of the antigen concentration in plasma by administering antigen-binding molecules, and methods for improving the plasma retention of an antigen-binding molecule, as well as antigen-binding molecules that allow enhanced antigen uptake into cells, antigen-binding molecules having an increased number of times of antigen binding, antigen-binding molecules that can promote reduction of the antigen concentration in plasma when administered, antigen-binding molecules with improved plasma retention, pharmaceutical compositions comprising the above antigen-binding molecules, and methods for producing them. The present inventors revealed that the above objective can be achieved by using antigen-binding molecules that show calcium-dependent antigen-antibody reaction.
    Type: Application
    Filed: November 30, 2011
    Publication date: August 21, 2014
    Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Atsuhiko Maeda, Junichi Nezu, Yoshinao Ruike, Takeshi Baba, Shun Shimizu