Patents by Inventor Miho Maruyama

Miho Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10020539
    Abstract: A nonaqueous electrolyte solution secondary battery of the embodiment includes an exterior material, a nonaqueous electrolyte solution, a positive electrode, a negative electrode and a separator sandwiched between the positive electrode and the negative electrode. The nonaqueous electrolyte solution is charged in the exterior material. The nonaqueous electrolyte solution contains at least one of sulfone-based compounds represented by formula 1, a partially fluorinated ether represented by a molecular formula of formula 2, and at least one of lithium salts. The positive electrode is housed in the exterior material. The positive electrode contains a composite oxide represented by L1?xMn1.5?yNi0.5?zMy+zO4 as a positive electrode active material (wherein 0?x?1, 0?(y+z)?0.15, and M represents one, or two or more selected from Mg, Al, Ti, Fe, Co, Ni, Cu, Zn, Ga, Nb, Sn, Zr and Ta). The negative electrode is housed in the exterior material.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 10, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Wen Zhang, Miho Maruyama
  • Publication number: 20170018807
    Abstract: A nonaqueous electrolyte solution secondary battery of the embodiment includes an exterior material, a nonaqueous electrolyte solution, a positive electrode, a negative electrode and a separator sandwiched between the positive electrode and the negative electrode. The nonaqueous electrolyte solution is charged in the exterior material. The nonaqueous electrolyte solution contains at least one of sulfone-based compounds represented by formula 1, a partially fluorinated ether represented by a molecular formula of formula 2, and at least one of lithium salts. The positive electrode is housed in the exterior material. The positive electrode contains a composite oxide represented by L1-xMn1.5-yNi0.5-zMy+zO4 as a positive electrode active material (wherein 0?x?1, 0?(y+z)?0.15, and M represents one, or two or more selected from Mg, Al, Ti, Fe, Co, Ni, Cu, Zn, Ga, Nb, Sn, Zr and Ta). The negative electrode is housed in the exterior material.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 19, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takashi KISHI, Wen ZHANG, Miho MARUYAMA
  • Patent number: 8303853
    Abstract: A method using a chemical synthesis method to produce a metallic nanoparticle inorganic composite having fine metallic nanoparticles that are uniformly dispersed at a high density in a solidified matrix, a metallic nanoparticle inorganic composite, and a plasmon waveguide using this composite are provided. Thus, a method including: preparing a precursor solution, applying the precursor solution onto a substrate, and then hydrolyzing the precursor solution to form an oxide film having fine pores, bringing the oxide film into contact with an acidic aqueous solution of tin chloride to chemically adsorb Sn2+ ions in the fine pores, removing an excess of the Sn2+ ions, bringing the oxide film into contact with an aqueous metal chelate solution to precipitate metallic nanoparticles in the fine pores, and removing an excess of ions of the metal is provided.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Maruyama, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Patent number: 7972539
    Abstract: A process for producing a metallic-nanoparticle inorganic composite 10 includes an oxide film formation step in which an oxide film 14 having micropores is formed on a substrate by a sol-gel method in which a metal alkoxide is partly hydrolyzed by the action of an acid catalyst, a tin deposition step in which the oxide film 14 is brought into contact with an acidic aqueous solution of tin chloride, an excess Sn2+ ion removal step in which Sn2+ ions are removed from the micropores, a metallic-nanoparticle deposition step in which the oxide film 14 is brought into contact with an aqueous solution of a metal chelate to deposit metallic nanoparticles 12 in the micropores, and an excess metal ion removal step in which metal ions are removed from the micropores; and a metallic-nanoparticle inorganic composite 10 is produced by this process.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Maruyama, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Publication number: 20100276649
    Abstract: A process for producing a metallic-nanoparticle inorganic composite 10 includes an oxide film formation step in which an oxide film 14 having micropores is formed on a substrate by a sol-gel method in which a metal alkoxide is partly hydrolyzed by the action of an acid catalyst, a tin deposition step in which the oxide film 14 is brought into contact with an acidic aqueous solution of tin chloride, an excess Sn2+ ion removal step in which Sn2+ ions are removed from the micropores, a metallic-nanoparticle deposition step in which the oxide film 14 is brought into contact with an aqueous solution of a metal chelate to deposit metallic nanoparticles 12 in the micropores, and an excess metal ion removal step in which metal ions are removed from the micropores; and a metallic-nanoparticle inorganic composite 10 is produced by this process.
    Type: Application
    Filed: September 25, 2008
    Publication date: November 4, 2010
    Inventors: Miho MARUYAMA, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Patent number: 7759019
    Abstract: A cathode includes a diffusion layer, and a porous catalyst layer provided on the diffusion layer. The porous catalyst layer has a thickness not greater than 60 ?m, a porosity of 30 to 70% and a pore diameter distribution including a peak in a range of 20 to 200 nm of a pore diameter. A volume of pores having a diameter of 20 to 200 nm is not less than 50% of a pore volume of the porous catalyst layer. The porous catalyst layer contains a supported catalyst comprising 10 to 30% by weight of a fibrous supported catalyst and 70 to 90% by weight of a granular supported catalyst. The fibrous supported catalyst includes a carbon nanofiber having a herringbone structure or a platelet structure. The granular supported catalyst includes a carbon black having 200 to 600 mL/100 g of a dibutyl phthalate (DBP) absorption value.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Miho Maruyama, Jun Tamura, Yoshihiro Akasaka, Yoshihiko Nakano
  • Patent number: 7738752
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamagiwa, Kenji Todori, Reiko Yoshimura, Miho Maruyama, Kou Yamada, Yasuyuki Hotta, Tsukasa Tada
  • Publication number: 20100072420
    Abstract: A method using a chemical synthesis method to produce a metallic nanoparticle inorganic composite having fine metallic nanoparticles that are uniformly dispersed at a high density in a solidified matrix, a metallic nanoparticle inorganic composite, and a plasmon waveguide using this composite are provided. Thus, a method including: preparing a precursor solution, applying the precursor solution onto a substrate, and then hydrolyzing the precursor solution to form an oxide film having fine pores, bringing the oxide film into contact with an acidic aqueous solution of tin chloride to chemically adsorb Sn2+ ions in the fine pores, removing an excess of the Sn2+ ions, bringing the oxide film into contact with an aqueous metal chelate solution to precipitate metallic nanoparticles in the fine pores, and removing an excess of ions of the metal is provided.
    Type: Application
    Filed: July 10, 2009
    Publication date: March 25, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Miho Maruyama, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Publication number: 20100021104
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 28, 2010
    Inventors: Masakazu YAMAGIWA, Kenji TODORI, Reiko YOSHIMURA, Miho MARUYAMA, Kou YAMADA, Yasuyuki HOTTA, Tsukasa TADA
  • Patent number: 7471863
    Abstract: A near-field interaction control element includes a near-field optical waveguide containing particles formed of a metal, a metal anion or a metal cation with a diameter of 0.5 nm or more and 3 nm or less and a dielectric constant of ?2.5 or more and ?1.5 or less, an electron injector/discharger injecting or discharging an electron into or from the particles contained in the near-field optical waveguide to vary a dielectric constant of the near-field optical waveguide, a near-field light introducing part introducing near-field light into the near-field optical waveguide, and a near-field light emitting part emitting the near-field light having guided through the near-field optical waveguide.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 30, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Todori, Miho Maruyama, Reiko Yoshimura, Fumihiko Aiga, Tsukasa Tada, Ko Yamada
  • Patent number: 7469083
    Abstract: An optical waveguide includes a propagating light waveguide, a coupler including a photonic crystal, and a surface plasmon waveguide, the propagating light waveguide, the coupler, and the surface plasmon waveguide being disposed in one plane along a waveguiding direction.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 23, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Todori, Reiko Yoshimura, Tsukasa Tada, Kou Yamada, Miho Maruyama
  • Publication number: 20080241473
    Abstract: The present invention is related to a process for producing a metallic fine particle dispersed film which includes metallic fine particles dispersed densely within a silicon oxide layer without aggregation. The process includes hydrolyzing and polycondensing an organosilane to form a silicon oxide layer with hydroxyl and/or alkoxide groups remaining unremoved on its side chains, bringing the silicon oxide layer into contact with an aqueous acidic tin chloride solution, and then bringing the silicon oxide layer into contact with an aqueous metal chelate solution to disperse metallic fine particles in the silicon oxide layer.
    Type: Application
    Filed: February 6, 2008
    Publication date: October 2, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Miho MARUYAMA, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Ko Yamada
  • Publication number: 20080240652
    Abstract: An optical waveguide includes a propagating light waveguide, a coupler including a photonic crystal, and a surface plasmon waveguide, the propagating light waveguide, the coupler, and the surface plasmon waveguide being disposed in one plane along a waveguiding direction.
    Type: Application
    Filed: March 17, 2008
    Publication date: October 2, 2008
    Inventors: Kenji TODORI, Reiko Yoshimura, Tsukasa Tada, Kou Yamada, Miho Maruyama
  • Publication number: 20080107371
    Abstract: A near-field interaction control element includes a near-field optical waveguide containing particles formed of a metal, a metal anion or a metal cation with a diameter of 0.5 nm or more and 3 nm or less and a dielectric constant of ?2.5 or more and ?1.5 or less, an electron injector/discharger injecting or discharging an electron into or from the particles contained in the near-field optical waveguide to vary a dielectric constant of the near-field optical waveguide, a near-field light introducing part introducing near-field light into the near-field optical waveguide, and a near-field light emitting part emitting the near-field light having guided through the near-field optical waveguide.
    Type: Application
    Filed: March 26, 2007
    Publication date: May 8, 2008
    Inventors: Kenji Todori, Miho Maruyama, Reiko Yoshimura, Fumihiko Aiga, Tsukasa Tada, Ko Yamada
  • Publication number: 20060204832
    Abstract: A cathode includes a diffusion layer, and a porous catalyst layer provided on the diffusion layer. The porous catalyst layer has a thickness not greater than 60 ?m, a porosity of 30 to 70% and a pore diameter distribution including a peak in a range of 20 to 200 nm of a pore diameter. A volume of pores having a diameter of 20 to 200 nm is not less than 50% of a pore volume of the porous catalyst layer. The porous catalyst layer contains a supported catalyst comprising 10 to 30% by weight of a fibrous supported catalyst and 70 to 90% by weight of a granular supported catalyst. The fibrous supported catalyst includes a carbon nanofiber having a herringbone structure or a platelet structure. The granular supported catalyst includes a carbon black having 200 to 600 mL/100 g of a dibutyl phthalate (DBP) absorption value.
    Type: Application
    Filed: March 9, 2006
    Publication date: September 14, 2006
    Inventors: Wu Mei, Miho Maruyama, Jun Tamura, Yoshihiro Akasaka, Yoshihiko Nakano
  • Patent number: 7005405
    Abstract: The present invention is to provide a metal oxide sintered structure having a homogeneous catalyst supporting ability, and a production method therefor. Hardly reducing oxide powders and reducing oxide powders are mixed, and then kneaded with a binder. By extrusion molding, a structure comprising channels (fluid communicating holes) is formed. Then, after heating reaction and solid solution, it is reduced under an atmosphere containing a hydrogen. Thereby, a metal oxide sintered structure having the fluid communicating holes, with the metal particles precipitated on the surface is produced. The structure is suitable for use as a catalyst for a fuel cell, or the like.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: February 28, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Miho Maruyama, Yasuhiro Goto
  • Publication number: 20030064886
    Abstract: The present invention is to provide a metal oxide sintered structure having a homogeneous catalyst supporting ability, and a production method therefor. Hardly reducing oxide powders and reducing oxide powders are mixed, and then kneaded with a binder. By extrusion molding, a structure comprising channels (fluid communicating holes) is formed. Then, after heating reaction and solid solution, it is reduced under an atmosphere containing a hydrogen. Thereby, a metal oxide sintered structure having the fluid communicating holes, with the metal particles precipitated on the surface is produced. The structure is suitable for use as a catalyst for a fuel cell, or the like.
    Type: Application
    Filed: September 4, 2002
    Publication date: April 3, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Miho Maruyama, Yasuhiro Goto
  • Patent number: 5916520
    Abstract: The brazing filler of the present invention is excellent in wetting properties towards the open end of a ceramic cylinder and a metal sealing cap can be sealed well on the open end. The present brazing filler comprises Ag, Cu and active metal, in which the Cu-active metal compound is contained in an amount of not more than 40% by volume.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: June 29, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Maruyama, Masako Nakahashi, Kiyoshi Osabe, Rika Takigawa, Shoji Niwa