Patents by Inventor Mijia Lu

Mijia Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250250548
    Abstract: The current disclosure relates to methods, compositions and kits for detecting modified adenosine in a target RNA molecule. Aspects relate to a method for detecting modified adenosine in a target ribonucleic acid (RNA) comprising contacting the target RNA with an adenosine deaminase enzyme (adenosine deaminase, RNA-specific) to generate a target RNA with deaminated adenosines and sequencing the target RNA with deaminated adenosines; wherein the modified adenosine is detected when the nucleotide sequence includes adenosine within a m6A motif.
    Type: Application
    Filed: January 8, 2025
    Publication date: August 7, 2025
    Applicants: The University of Chicago, Nationwide Children's Hospital, The Ohio State University
    Inventors: Jianrong LI, Mark E. PEEPLES, Chuan HE, Stefan NIEWIESK, Mijia LU, Miaoge XUE, Zijie ZHANG, Boxuan ZHAO
  • Patent number: 12227769
    Abstract: The current disclosure relates to methods, compositions and kits for detecting modified adenosine in a target RNA molecule. Aspects relate to a method for detecting modified adenosine in a target ribonucleic acid (RNA) comprising contacting the target RNA with an adenosine deaminase enzyme (adenosine deaminase, RNA-specific) to generate a target RNA with deaminated adenosines and sequencing the target RNA with deaminated adenosines; wherein the modified adenosine is detected when the nucleotide sequence includes adenosine within a m6A motif.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: February 18, 2025
    Assignees: The University of Chicago, Nationwide Children's Hospital, The Ohio State University
    Inventors: Jianrong Li, Mark E. Peeples, Chuan He, Stefan Niewiesk, Mijia Lu, Miaoge Xue, Zijie Zhang, Boxuan Zhao
  • Publication number: 20230310581
    Abstract: Disclosed herein is a live attenuated recombinant measles virus (rMeV)-based coronavirus vaccine containing a SARS-CoV-2 spike (S) protein that has at least one mutation to remove a glycosylation site. In some embodiments, the rMeVs-based coronavirus vaccine contains full-length stabilized pre-fusion and native S proteins, S proteins of SARS-CoV-2 variants, truncated S proteins lacking its transmembrane and cytoplasmic domains, S proteins lacking glycosylation sites, the monomeric and trimeric receptor-binding domain (RBD), the monomeric and trimeric S1 protein, Fc-fused RBD, or Fc-fused S1 protein. Also disclosed is a live attenuated recombinant coronavirus vaccine, wherein a stabilized prefusion spike (S) protein is inserted into a viral vector genome.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 5, 2023
    Inventors: Jianrong LI, Stefan NIEWIESK, Anzhong LI, Mijia LU
  • Patent number: 11739348
    Abstract: Embodiments disclosed herein provide compositions, methods, and uses for recombinant vectors encoding Zika virus (ZIKV) protein subunits, and immunogenic compositions thereof. Certain embodiments provide recombinant vectors encoding ZIKV nonstructural protein 1 (NS 1), and optionally, ZIKV envelope (E) protein and premembrane (prM) protein. Other embodiments provide expression cassettes comprising a promoter operably linked to a polynucleotide that encodes the ZIKV NS 1 protein, and optionally ZIKV E and prM proteins. In some embodiments, the disclosed expression cassettes can be incorporated into a vector to produce a recombinant vector. Also provided are immunogenic compositions comprising one or more recombinant vectors described herein, and methods for inducing an immune response against ZIKV in a subject comprising administering to the subject an immunologically effective dose of an immunogenic composition of the present disclosure.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 29, 2023
    Assignees: The Research Institute at Nationwide Children's Hospital, Ohio State Innovation Foundation
    Inventors: Mark Peeples, Jianrong Li, Prosper N. Boyaka, Anzhong Li, Mijia Lu, Yuanmei Ma
  • Publication number: 20220033783
    Abstract: The current disclosure relates to methods, compositions and kits for detecting modified adenosine in a target RNA molecule. Aspects relate to a method for detecting modified adenosine in a target ribonucleic acid (RNA) comprising contacting the target RNA with an adenosine deaminase enzyme (adenosine deaminase, RNA-specific) to generate a target RNA with deaminated adenosines and sequencing the target RNA with deaminated adenosines; wherein the modified adenosine is detected when the nucleotide sequence includes adenosine within a m6A motif.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 3, 2022
    Applicants: The University of Chicago, Nationwide Children's Hospital, The Ohio State University
    Inventors: Jianrong LI, Mark E. PEEPLES, Chuan HE, Stefan NIEWIESK, Mijia LU, Miaoge XUE, Zijie ZHANG, Boxuan ZHAO
  • Publication number: 20210171979
    Abstract: Embodiments disclosed herein provide compositions, methods, and uses for recombinant vectors encoding Zika virus (ZIKV) protein subunits, and immunogenic compositions thereof. Certain embodiments provide recombinant vectors encoding ZIKV nonstructural protein 1 (NS 1), and optionally, ZIKV envelope (E) protein and premembrane (prM) protein. Other embodiments provide expression cassettes comprising a promoter operably linked to a polynucleotide that encodes the ZIKV NS 1 protein, and optionally ZIKV E and prM proteins. In some embodiments, the disclosed expression cassettes can be incorporated into a vector to produce a recombinant vector. Also provided are immunogenic compositions comprising one or more recombinant vectors described herein, and methods for inducing an immune response against ZIKV in a subject comprising administering to the subject an immunologically effective dose of an immunogenic composition of the present disclosure.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 10, 2021
    Inventors: Mark Peeples, Jianrong Li, Prosper N. Boyaka, Anzhong Li, Mijia Lu, Yuanmei Ma