Patents by Inventor Mi Jung Ji

Mi Jung Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230194389
    Abstract: Provided herein are devices, kits, systems, and methods for collecting samples for analytical analysis and the safe disposal of sample collection devices after their use. The devices, kits, systems, and methods find use, for example, for disposing of biohazard materials by users in settings that may not be equipped with the professional biohazard disposal systems of laboratories, hospitals, and medical clinics.
    Type: Application
    Filed: May 7, 2021
    Publication date: June 22, 2023
    Inventors: Mi Jung Ji, Byungjin Kim, Jro Lee, Sangyong Park
  • Patent number: 9543592
    Abstract: Provided is a method of manufacturing an anode core-shell complex for a solid oxide fuel cell, including (A) manufacturing a stabilized zirconia (YSZ) sol by using zirconium hydroxide (Zr(OH)4) and yttrium nitrate (Y(NO3)3.6H2O) as a starting material and distilled water as a solvent by a hydrothermal method, (B) agitating nickel chloride, stabilized zirconia in a sol state, and a surfactant, (C) adding sodium hydroxide (NaOH), (D) adjusting a pH to a range of 6 to 8, and (E) sintering the nickel-stabilized zirconia core-shell powder.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: January 10, 2017
    Assignee: KOREA INSTITUTE OF CERAMIC ENGINEERING AND TECHNOLOGY
    Inventors: Byung Hyun Choi, Mi Jung Ji, Min Jin Lee, Sun Ki Hong, Young Jin Kang
  • Patent number: 9050776
    Abstract: The present disclosure relates to a method of synthesis of Lithium Titanate Oxide used for a cathode of Lithium ion battery, the method comprising: (A) diluting TiCl4 with TiOCl2; (B) adding YCl3 or NbCl5 at the rate of 0.1˜2 mol % to Ti(mol); (C) forming a complex salt by dissolving to put at least one selected from a group consisting of Hydroxy propyl cellulose or Polyethylene glycol in a solvent, the Hydroxy propyl cellulose being a complexing agent and being a dispersing agent as well, whereas the Polyethylene glycol being a dispersing agent; (D) synthesizing a titanium precursor by adding an aqueous ammonia solution; (E) preparing Y or Nb doped titanium dioxide(TiO2) powder by heat-treating the synthetic product in a temperature of 500˜700° C.; and (F) mixing the Y or Nb doped TiO2 powder with LiOH.H2O and heat-treating the mixture in a temperature of 800˜900° C.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 9, 2015
    Assignee: KOREA INSTITUTE OF CERAMIC ENGINEERING AND TECHNOLOGY
    Inventors: Byung Hyun Choi, Mi Jung Ji, Eun Kyung Kim, Young Jin Kwon, Sung Hun Jung, Yong Tae An
  • Publication number: 20140342269
    Abstract: Provided is a method of manufacturing an anode core-shell complex for a solid oxide fuel cell, including (A) manufacturing a stabilized zirconia (YSZ) sol by using zirconium hydroxide (Zr(OH)4) and yttrium nitrate (Y(NO3)3.6H2O) as a starting material and distilled water as a solvent by a hydrothermal method, (B) agitating nickel chloride, stabilized zirconia in a sol state, and a surfactant, (C) adding sodium hydroxide (NaOH), (D) adjusting a pH to a range of 6 to 8, and (E) sintering the nickel-stabilized zirconia core-shell powder.
    Type: Application
    Filed: November 25, 2013
    Publication date: November 20, 2014
    Applicant: KOREA INSTITUTE OF CERAMIC ENGINEERING AND TECHNOLOGY
    Inventors: Byung Hyun CHOI, Mi Jung JI, Min Jin LEE, Sun Ki HONG, Young Jin KANG
  • Publication number: 20140004346
    Abstract: The present disclosure relates to a method of synthesis of Lithium Titanate Oxide used for a cathode of Lithium ion battery, the method comprising: (A) diluting TiCl4 with TiOCl2; (B) adding YCl3 or NbCl5 at the rate of 0.1˜2 mol % to Ti(mol); (C) forming a complex salt by dissolving to put at least one selected from a group consisting of Hydroxy propyl cellulose or Polyethylene glycol in a solvent, the Hydroxy propyl cellulose being a complexing agent and being a dispersing agent as well, whereas the Polyethylene glycol being a dispersing agent; (D) synthesizing a titanium precursor by adding an aqueous ammonia solution; (E) preparing Y or Nb doped titanium dioxide(TiO2) powder by heat-treating the synthetic product in a temperature of 500˜700° C.; and (F) mixing the Y or Nb doped TiO2 powder with LiOH.H2O and heat-treating the mixture in a temperature of 800˜900° C.
    Type: Application
    Filed: August 31, 2012
    Publication date: January 2, 2014
    Inventors: Byung Hyun CHOI, Mi Jung Ji, Eun Kyung Kim, Young Jin Kwon, Sung Hun Jung, Yong Tae An
  • Publication number: 20130236778
    Abstract: The present invention is based on an electrode binding material including polyacrylics and a functional group substituent(Li, Na, K) as a binder of an electrode. The present invention provides a polyacrylic acid an electrode binding material including a polyacrylics mixture having a high degree of polymerization and a functional group with Li, Na or K being substituted and high efficiency Lithium secondary battery utilizing a silicon anode active material etc. using the same. Therefore, the electrode binding material of the present invention has an excellent binding force, and can reduce side reactions in reactions of a secondary battery, and maintain a stable cycle property, and also enhance electric performance.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 12, 2013
    Inventors: Byung Hyun Choi, Mi Jung Ji, Sung Hun Jung, Eun Kyung Kim