Patents by Inventor Mika Gocho

Mika Gocho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230391161
    Abstract: An HVAC system including an evaporator, a condenser, an expansion valve, and a compressor. An HVAC case includes a first heat exchanger having a first height, a second heat exchanger having a second height that is greater than the first height, and an air mix door movable to direct airflow from the second heat exchanger to the first heat exchanger or around the first heat exchanger. In a maximum hot mode, a valve system directs the coolant through the condenser, the first heat exchanger, and the second heat exchanger, and the air mix door directs airflow from the second heat exchanger to the first heat exchanger. In a maximum cold mode, the valve system directs the coolant through the evaporator, the first heat exchanger, and the second heat exchanger.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Applicant: DENSO International America, Inc.
    Inventors: Dwayne TAYLOR, Matt FILIPKOWSKI, Mika GOCHO, Aaron COMPTON, Brian BELANGER, Jonathan NOAH-NAVARRO
  • Publication number: 20230271474
    Abstract: A secondary loop HVAC system including an evaporator, a condenser, an expansion valve, and a compressor. A refrigerant loop is in fluid communication with each of the evaporator, the condenser, and the expansion valve. An HVAC case includes a first heat exchanger and a second heat exchanger. A first coolant loop is in fluid communication with the first heat exchanger, the second heat exchanger, and either the evaporator or the condenser. A valve system is configured to control flow of the coolant through the first coolant loop. In a maximum hot heating mode, the valve system is configured to direct the coolant through the condenser, the first heat exchanger, and the second heat exchanger. In a maximum cold cooling mode, the valve system is configured to direct the coolant through the evaporator, the first heat exchanger, and the second heat exchanger.
    Type: Application
    Filed: September 9, 2022
    Publication date: August 31, 2023
    Inventors: Dwayne TAYLOR, Matt FILIPKOWSKI, Mika GOCHO, Aaron COMPTON, Brian BELANGER, Jonathan NOAH-NAVARRO
  • Publication number: 20220363108
    Abstract: An air circulation system configured to mount within a B-pillar, C-pillar, other pillar, or interior trim or cross trims through an air channel of a vehicle. The air circulation system includes a scroll within the pillar, which defines an inlet configured to receive inlet air from a vehicle cabin at the pillar. A fan within the pillar is configured to circulate the inlet air within the scroll. An elongated throat extending from the scroll is configured to receive forced air from the scroll. The throat defines a length and an outlet extending along the length, wherein the outlet delivers the forced air into the vehicle cabin from the pillar in an air stream. The outlet is configured such that the forced air delivered from the outlet creates a Coand? effect that attracts air in the vehicle cabin to move in the direction of the air stream.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 17, 2022
    Inventors: Mark KASTNER, Matthew FILIPKOWSKI, Yuanpei SONG, Mika GOCHO
  • Patent number: 9372014
    Abstract: An ejector-type refrigeration cycle device is provided with a first ejector (15) which draws refrigerant from a refrigerant suction port (15b, 24b) by using a high-speed refrigerant flow jetted from a nozzle part (15a, 24a), and a first suction-side evaporator (19) connected to the refrigerant suction port (15b) of the first ejector (15), and a second suction-side evaporator (27) connected to a refrigerant suction port (24b) of a second ejector (24). A flow amount of the refrigerant in the second ejector (24) is smaller than a flow amount of the refrigerant in the first ejector (15). The refrigerant branched at a branch part (Z2) that is positioned on a downstream refrigerant side of a radiator (13) and on an upstream refrigerant side of the first ejector (15) flows into the second ejector (24), and the refrigerant branched on a downstream refrigerant side of the second ejector (24) flows into the second suction-side evaporator (27).
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: June 21, 2016
    Assignee: DENSO CORPORATION
    Inventors: Youhei Nagano, Mika Gocho, Yoshiaki Takano, Etsuhisa Yamada, Kazunori Mizutori
  • Patent number: 8973394
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 10, 2015
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho
  • Publication number: 20140345318
    Abstract: An ejector-type refrigeration cycle device is provided with a first ejector (15) which draws refrigerant from a refrigerant suction port (15b, 24b) by using a high-speed refrigerant flow jetted from a nozzle part (15a, 24a), and a first suction-side evaporator (19) connected to the refrigerant suction port (15b) of the first ejector (15), and a second suction-side evaporator (27) connected to a refrigerant suction port (24b) of a second ejector (24). A flow amount of the refrigerant in the second ejector (24) is smaller than a flow amount of the refrigerant in the first ejector (15). The refrigerant branched at a branch part (Z2) that is positioned on a downstream refrigerant side of a radiator (13) and on an upstream refrigerant side of the first ejector (15) flows into the second ejector (24), and the refrigerant branched on a downstream refrigerant side of the second ejector (24) flows into the second suction-side evaporator (27).
    Type: Application
    Filed: November 15, 2012
    Publication date: November 27, 2014
    Applicant: DENSO CORPORATION
    Inventors: Youhei Nagano, Mika Gocho, Yoshiaki Takano, Etsuhisa Yamada, Kazunori Mizutori
  • Patent number: 8814532
    Abstract: A nozzle of an ejector depressurizes and injects fluid, which is supplied to the nozzle. The nozzle is received in a receiving space of a body. The nozzle and the body are formed by press working. The nozzle includes nozzle-side ribs, which extend in an axial direction and project radially outward. The body includes body-side ribs, which extend in the axial direction and project radially outward. In a predetermined cross section of each of the nozzle and the body, which is perpendicular to the axial direction and includes the corresponding ribs, the nozzle or the body is formed seamlessly as a continuous single piece member.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 26, 2014
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Kazunori Mizutori, Masahiko Ikawa, Yasuhiro Tamatsu, Hiroki Nakagawa, Haruyuki Nishijima, Mika Gocho
  • Patent number: 8523091
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: September 3, 2013
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8424338
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, first and second throttle devices, a flow distributor, an ejector, a suction passage, and first and second evaporators. The flow distributor separates refrigerant decompressed through the first throttle device into a first passage and a second passage. The first passage is in communication with a nozzle portion of the ejector. The second passage is in communication with a suction portion of the ejector through the suction passage. The second throttle device and the second evaporator are disposed on the suction passage. The flow distributor is configured to be capable of adjusting a ratio of a flow rate of refrigerant passing through the second passage to a flow rate of refrigerant passing through the first passage in accordance with a heat load of at least one of the radiator, the first evaporator and the second evaporator.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 23, 2013
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Kenta Kayano
  • Patent number: 8365552
    Abstract: In an evaporator unit for a refrigerant cycle device, an evaporator is connected to an ejector to evaporate refrigerant to be drawn into a refrigerant suction port of the ejector or the refrigerant flowing out of the outlet of the ejector. The evaporator includes a plurality of tubes in which the refrigerant flows, and a tank configured to distribute the refrigerant into the tubes or to collect the refrigerant from the tubes. The ejector is located in the tank, and the nozzle portion is brazed to the tank to be fixed into the tank. The tank may be a header tank directly connected to the tubes or may be a separate tank separated from the header tank.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: February 5, 2013
    Assignee: Denso Corporation
    Inventors: Bradley Brodie, Yoshiaki Takano, Shigeki Ito, Mika Gocho, Haruyuki Nishijima, Tomohiko Nakamura
  • Publication number: 20120318894
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 20, 2012
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8282025
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 9, 2012
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8191383
    Abstract: An ejector device includes a nozzle having an inner wall surface defining a circular cross-sectional fluid passage extending from an inlet to a jet port. Furthermore, the fluid passage has a throat portion at a position between the inlet and the jet port, and a passage expanding portion in which the cross-sectional area of the fluid passage is enlarged from the throat portion as toward downstream. The passage expanding portion includes a middle portion in which the inner wall surface is expanded in a fluid flow direction by a first expanding angle, and an outlet portion from a downstream end of the middle portion to the jet port, in which the inner wall surface is expanded in the fluid flow direction by a second expanding angle that is larger than the first expanding angle. The ejector device can be suitably used for a refrigeration cycle apparatus.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho, Hideya Matsui, Kenta Kayano, Teruyuki Hano
  • Patent number: 8176744
    Abstract: A refrigeration-cycle component assembly includes a pipe connecting member, a box temperature-sensitive expansion valve, an ejector, a passenger-compartment high-pressure pipe, and a passenger-compartment low-pressure pipe. The component assembly is provided in a flat space, which is defined at a side of an air-conditioning unit in a vehicle transverse direction, and which is flat in the vehicle transverse direction. The pipe connecting member and the refrigerant suction portion are intensively arranged at a vehicle front side in the flat space. The component assembly is entirely covered by a heat insulating member.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 15, 2012
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Mika Gocho, Yoshiaki Takano
  • Publication number: 20110236227
    Abstract: A nozzle of an ejector depressurizes and injects fluid, which is supplied to the nozzle. The nozzle is received in a receiving space of a body. The nozzle and the body are formed by press working. The nozzle includes nozzle-side ribs, which extend in an axial direction and project radially outward. The body includes body-side ribs, which extend in the axial direction and project radially outward. In a predetermined cross section of each of the nozzle and the body, which is perpendicular to the axial direction and includes the corresponding ribs, the nozzle or the body is formed seamlessly as a continuous single piece member.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Kazunori Mizutori, Masahiko Ikawa, Yasuhiro Tamatsu, Hiroki Nakagawa, Haruyuki Nishijima, Mika Gocho
  • Patent number: 7987685
    Abstract: A refrigerant cycle device includes a branch portion for branching a flow of refrigerant discharged from a compressor, a first radiator for radiating one high-temperature and high-pressure refrigerant branched at the branch portion, an ejector including a nozzle portion for decompressing refrigerant on a downstream side of the first radiator, a second radiator for radiating the other high-temperature and high-pressure refrigerant branched at the branch portion, a throttle device for decompressing refrigerant on a downstream side of the second radiator, and a suction side evaporator for evaporating refrigerant downstream of the throttle device and for allowing the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. Furthermore, the first and second radiators are disposed downstream of the branch portion such that a heat radiation amount of refrigerant in the first radiator is smaller than that in the second radiator.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: August 2, 2011
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho
  • Publication number: 20110061423
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 17, 2011
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 7823400
    Abstract: A two-stage decompression ejector includes a variable throttle mechanism having a first throttle passage for decompressing a fluid and a valve body for changing a throttle passage area of the first throttle passage, a nozzle having therein a second throttle passage for further decompressing the fluid decompressed by the variable throttle mechanism, and a suction portion for drawing a fluid by a suction effect of a high-velocity jet fluid from the nozzle. The formula of 0.07?Vo×S/vn?0.7 is satisfied, in which Vo is an intermediate-pressure space volume (mm3) from an outlet of the variable throttle mechanism to an inlet of the second throttle passage, S is a throttle passage sectional area (mm2) of a minimum passage sectional area portion of the second throttle passage, and vn is a flow velocity (mm/s) of the fluid passing through the minimum passage sectional area portion.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 2, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Yoshiaki Takano, Mika Gocho
  • Patent number: 7770412
    Abstract: An integrated unit for a refrigerant cycle device includes an ejector having a nozzle part for decompressing refrigerant, and an evaporator located to evaporate the refrigerant to be drawn into a refrigerant suction port of the ejector or the refrigerant discharged from an outlet of the ejector. The evaporator includes a plurality of tubes defining refrigerant passages through which refrigerant flows, a tank that is disposed at one end side of the tubes for distributing refrigerant into the tubes and for collecting the refrigerant from the tubes. The tank extends in a tank longitudinal direction that is parallel to an arrangement direction of the tubes, and is provided with an end portion in the tank longitudinal direction. Furthermore, the end portion has a hole portion for inserting the ejector, and the ejector is inserted into an inner space of the tank from the hole portion.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: August 10, 2010
    Assignee: Denso Corporation
    Inventors: Naohisa Ishizaka, Thuya Aung, Hiroshi Oshitani, Yoshiaki Takano, Mika Gocho, Hirotsugu Takeuchi, Yoshiyuki Okamoto
  • Publication number: 20100175422
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 15, 2010
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho