Patents by Inventor Mikael Detalle
Mikael Detalle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10256183Abstract: The disclosed technology relates generally to a semiconductor device package comprising a metal-insulator-metal capacitor (MIMCAP). In one aspect, the MIMCAP comprises portions of a first and second metallization layers in a stack of metallization layers, e.g., copper metallization layers formed by single damascene processes. The MIMCAP comprises a bottom plate formed in the first metallization layer, a first conductive layer on and in electrical contact with the bottom plate, a dielectric layer on and in contact with the first conductive layer, a second conductive layer on and in contact with the dielectric layer, and a top plate formed in the second metallization layer, on and in electrical contact with the second metal plate. The electrical contacts to the bottom and top plates of the MIMCAP formed in the first and second metallization layer are thereby established without forming separate vias between the plates and the metallization layers.Type: GrantFiled: January 20, 2017Date of Patent: April 9, 2019Assignee: IMECInventors: Mikael Detalle, Eric Beyne
-
Patent number: 10141394Abstract: The disclosed technology relates to a metal-insulator-metal capacitor (MIMCAP) integrated as part of a back-end-of-line of an integrated circuit (IC). In one aspect, a MIMCAP comprises a first planar electrode having perforations formed therethrough, and a metal-insulator-metal (MIM) stack lining inner surfaces of cavities formed in the perforations and extending into the substrate. The MIMCAP additionally comprises a second electrode having a planar portion and metal extensions extending from the planar portion into the cavities. The first electrode and the planar portion of the second electrode are formed of or comprise planar metal areas of the respective metallization levels, which can be formed by a damascene process, which allows for a reduction of the series resistance. A low aspect ratio can be obtained using one electrode having a 3D-structure (the electrode having extensions extending into the cavities).Type: GrantFiled: November 23, 2016Date of Patent: November 27, 2018Assignee: IMEC vzwInventor: Mikael Detalle
-
Publication number: 20170194246Abstract: The disclosed technology relates generally to a semiconductor device package comprising a metal-insulator-metal capacitor (MIMCAP). In one aspect, the MIMCAP comprises portions of a first and second metallization layers in a stack of metallization layers, e.g., copper metallization layers formed by single damascene processes. The MIMCAP comprises a bottom plate formed in the first metallization layer, a first conductive layer on and in electrical contact with the bottom plate, a dielectric layer on and in contact with the first conductive layer, a second conductive layer on and in contact with the dielectric layer, and a top plate formed in the second metallization layer, on and in electrical contact with the second metal plate. The electrical contacts to the bottom and top plates of the MIMCAP formed in the first and second metallization layer are thereby established without forming separate vias between the plates and the metallization layers.Type: ApplicationFiled: January 20, 2017Publication date: July 6, 2017Inventors: Mikael Detalle, Eric Beyne
-
Publication number: 20170148869Abstract: The disclosed technology relates to a metal-insulator-metal capacitor (MIMCAP) integrated as part of a back-end-of-line of an integrated circuit (IC). In one aspect, a MIMCAP comprises a first planar electrode having perforations formed therethrough, and a metal-insulator-metal (MIM) stack lining inner surfaces of cavities formed in the perforations and extending into the substrate. The MIMCAP additionally comprises a second electrode having a planar portion and metal extensions extending from the planar portion into the cavities. The first electrode and the planar portion of the second electrode are formed of or comprise planar metal areas of the respective metallization levels, which can be formed by a damascene process, which allows for a reduction of the series resistance. A low aspect ratio can be obtained using one electrode having a 3D-structure (the electrode having extensions extending into the cavities).Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventor: Mikael DETALLE
-
Publication number: 20160155699Abstract: The disclosed technology relates generally to a semiconductor device package comprising a metal-insulator-metal capacitor (MIMCAP). In one aspect, the MIMCAP comprises portions of a first and second metallization layers in a stack of metallization layers, e.g., copper metallization layers formed by single damascene processes. The MIMCAP comprises a bottom plate formed in the first metallization layer, a first conductive layer on and in electrical contact with the bottom plate, a dielectric layer on and in contact with the first conductive layer, a second conductive layer on and in contact with the dielectric layer, and a top plate formed in the second metallization layer, on and in electrical contact with the second metal plate. The electrical contacts to the bottom and top plates of the MIMCAP formed in the first and second metallization layer are thereby established without forming separate vias between the plates and the metallization layers.Type: ApplicationFiled: February 3, 2016Publication date: June 2, 2016Inventors: Mikael Detalle, Eric Beyne
-
Patent number: 9263408Abstract: The disclosed technology relates to pillar-type microbumps formed on a semiconductor component, such as an integrated circuit chip or an interposer substrate, and a method of forming the pillar-type microbumps. In one aspect, a method of forming the pillar-type microbump on a semiconductor component includes providing the semiconductor component, where the semiconductor component has an upper metallization layer, and the metallization layer has a contact area. The method additionally includes forming a passivation layer over the metallization layer. The method additionally includes forming a plurality of openings through the passivation layer such that the contact area is exposed at a bottom of the openings. The method further includes forming the microbump over the contact area, where the microbump forms an electrical connection with the contact area through the openings.Type: GrantFiled: November 27, 2013Date of Patent: February 16, 2016Assignee: IMECInventor: Mikael Detalle
-
Publication number: 20150130052Abstract: The disclosed technology relates to pillar-type microbumps formed on a semiconductor component, such as an integrated circuit chip or an interposer substrate, and a method of forming the pillar-type microbumps. In one aspect, a method of forming the pillar-type microbump on a semiconductor component includes providing the semiconductor component, where the semiconductor component has an upper metallization layer, and the metallization layer has a contact area. The method additionally includes forming a passivation layer over the metallization layer. The method additionally includes forming a plurality of openings through the passivation layer such that the contact area is exposed at a bottom of the openings. The method further includes forming the microbump over the contact area, where the microbump forms an electrical connection with the contact area through the openings.Type: ApplicationFiled: November 27, 2013Publication date: May 14, 2015Applicant: IMECInventor: Mikael Detalle
-
Publication number: 20140151848Abstract: The disclosed technology relates generally to a semiconductor device package comprising a metal-insulator-metal capacitor (MIMCAP). In one aspect, the MIMCAP is formed between a first and second metallization layers in a stack of metallization layers, e.g., copper metallization layers formed by single damascene processes. The MIMCAP comprises a bottom plate formed in the first metallization layer, a first conductive layer on and in electrical contact with the bottom plate, a dielectric layer on and in contact with the first conductive layer, a second conductive layer on and in contact with the dielectric layer, and a top plate formed in the second metallization layer, on and in electrical contact with the second metal plate. The electrical contacts to the bottom and top plates of the MIMCAP formed in the first and second metallization layer are thereby established without forming separate vias between the plates and the metallization layers.Type: ApplicationFiled: November 27, 2013Publication date: June 5, 2014Applicant: IMECInventors: Mikael Detalle, Eric Beyne