Patents by Inventor Mike Holden
Mike Holden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230013003Abstract: In some respects, concepts disclosed herein generally concern systems, methods and components to detect a presence of a liquid externally of a desired primary flow path through a segment of a fluid circuit, e.g., throughout a cooling loop. Some disclosed concepts pertain to systems, methods, and components to direct seepage or leakage of a liquid coolant toward a lead-detection sensor. As but one example, some disclosed liquid-cooled heat exchangers incorporate a leak-detection sensor, which, in turn, can couple with a computing environment that monitors for detected leaks, and, responsive to an indication of a detected leak, invokes a task to control or to mitigate the detected leak.Type: ApplicationFiled: September 23, 2022Publication date: January 19, 2023Inventors: Mike Holden, Seyed Kamaleddin Mostafavi Yazdi, Randy Kubik
-
Publication number: 20220408615Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.Type: ApplicationFiled: August 24, 2022Publication date: December 22, 2022Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
-
Patent number: 11473860Abstract: In some respects, concepts disclosed herein generally concern systems, methods and components to detect a presence of a liquid externally of a desired primary flow path through a segment of a fluid circuit, e.g., throughout a cooling loop. Some disclosed concepts pertain to systems, methods, and components to direct seepage or leakage of a liquid coolant toward a lead-detection sensor. As but one example, some disclosed liquid-cooled heat exchangers incorporate a leak-detection sensor, which, in turn, can couple with a computing environment that monitors for detected leaks, and, responsive to an indication of a detected leak, invokes a task to control or to mitigate the detected leak.Type: GrantFiled: April 16, 2020Date of Patent: October 18, 2022Assignee: CoolIT Systems, Inc.Inventors: Mike Holden, Kamal Mostafavi, Randy Kubik
-
Patent number: 11452243Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.Type: GrantFiled: October 11, 2018Date of Patent: September 20, 2022Assignee: CoolIT Systems, Inc.Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
-
Publication number: 20210127528Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.Type: ApplicationFiled: October 19, 2020Publication date: April 29, 2021Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Publication number: 20200340767Abstract: In some respects, concepts disclosed herein generally concern systems, methods and components to detect a presence of a liquid externally of a desired primary flow path through a segment of a fluid circuit, e.g., throughout a cooling loop. Some disclosed concepts pertain to systems, methods, and components to direct seepage or leakage of a liquid coolant toward a lead-detection sensor. As but one example, some disclosed liquid-cooled heat exchangers incorporate a leak-detection sensor, which, in turn, can couple with a computing environment that monitors for detected leaks, and, responsive to an indication of a detected leak, invokes a task to control or to mitigate the detected leak.Type: ApplicationFiled: April 16, 2020Publication date: October 29, 2020Inventors: Mike Holden, Kamal Mostafavi, Randy Kubik
-
Patent number: 10820450Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.Type: GrantFiled: November 14, 2016Date of Patent: October 27, 2020Assignee: CoolIT Systems, Inc.Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Publication number: 20190354121Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.Type: ApplicationFiled: July 29, 2019Publication date: November 21, 2019Inventors: Geoff Sean Lyon, Mike Holden
-
Publication number: 20190345928Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.Type: ApplicationFiled: July 26, 2019Publication date: November 14, 2019Inventors: Geoff Sean Lyon, Mike Holden
-
Patent number: 10364809Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.Type: GrantFiled: March 14, 2014Date of Patent: July 30, 2019Assignee: CoolIT Systems, Inc.Inventors: Geoff Sean Lyon, Mike Holden
-
Patent number: 10365667Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.Type: GrantFiled: November 17, 2016Date of Patent: July 30, 2019Assignee: CoolIT Systems, Inc.Inventors: Geoff Sean Lyon, Mike Holden
-
Publication number: 20190116694Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.Type: ApplicationFiled: October 11, 2018Publication date: April 18, 2019Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
-
Patent number: 9943014Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from a heat dissipator. A manifolded heat exchanger can be configured to receive heated working fluid from a plurality of heat-transfer elements and to reject heat to a working fluid of a second fluid circuit. In some embodiments, the heat exchanging manifold can split an incoming flow of working fluid from the second fluid circuit into two or more streams having different bulk flow directions. In some instances, heat exchanger portions of the heat exchanging manifold are configured to provide counter flow heat exchange between the working fluid of the first fluid circuit and the working fluid of the second fluid circuit.Type: GrantFiled: March 17, 2014Date of Patent: April 10, 2018Assignee: CoolIT Systems, Inc.Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Publication number: 20170068258Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.Type: ApplicationFiled: November 17, 2016Publication date: March 9, 2017Applicant: COOLIT SYSTEMS, INC.Inventors: Geoff Sean Lyon, Mike Holden
-
Publication number: 20170064874Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.Type: ApplicationFiled: November 14, 2016Publication date: March 2, 2017Applicant: COOLIT SYSTEMS, INC.Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Patent number: 9496200Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.Type: GrantFiled: July 26, 2012Date of Patent: November 15, 2016Assignee: COOLIT SYSTEMS, INC.Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Publication number: 20160281704Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.Type: ApplicationFiled: March 14, 2014Publication date: September 29, 2016Applicant: COOLIT SYSTEMS, INC.Inventors: Geoff Sean Lyon, Mike Holden
-
Patent number: 9052252Abstract: Leak detectors can have a sensor configured to detect a presence of a working fluid externally of a liquid-based heat-transfer system. The leak detector can also have an electrical circuit configured to emit a signal responsive to a detected presence of the working fluid externally of the liquid-based heat transfer system. Methods of detecting a leak of a working fluid from a liquid-based heat-transfer system can include sensing a presence or an absence of a working fluid externally of a liquid-based heat-transfer system. The methods can include generating a tachometer signal in correspondence with a sensed absence and a sensed presence of the working fluid. The methods can include monitoring the generated tachometer signal.Type: GrantFiled: March 13, 2014Date of Patent: June 9, 2015Assignee: COOLIT SYSTEMS, INC.Inventors: Geoff Sean Lyon, Mike Holden
-
Publication number: 20140262180Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from a heat dissipator. A manifolded heat exchanger can be configured to receive heated working fluid from a plurality of heat-transfer elements and to reject heat to a working fluid of a second fluid circuit. In some embodiments, the heat exchanging manifold can split an incoming flow of working fluid from the second fluid circuit into two or more streams having different bulk flow directions. In some instances, heat exchanger portions of the heat exchanging manifold are configured to provide counter flow heat exchange between the working fluid of the first fluid circuit and the working fluid of the second fluid circuit.Type: ApplicationFiled: March 17, 2014Publication date: September 18, 2014Applicant: COOLIT SYSTEMS INC.Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
-
Publication number: 20140266744Abstract: Leak detectors can have a sensor configured to detect a presence of a working fluid externally of a liquid-based heat-transfer system. The leak detector can also have an electrical circuit configured to emit a signal responsive to a detected presence of the working fluid externally of the liquid-based heat transfer system. Methods of detecting a leak of a working fluid from a liquid-based heat-transfer system can include sensing a presence or an absence of a working fluid externally of a liquid-based heat-transfer system. The methods can include generating a tachometer signal in correspondence with a sensed absence and a sensed presence of the working fluid. The methods can include monitoring the generated tachometer signal.Type: ApplicationFiled: March 13, 2014Publication date: September 18, 2014Applicant: COOLIT SYSTEMS INC.Inventors: Geoff Sean Lyon, Mike Holden