Patents by Inventor Mike Huang

Mike Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200326761
    Abstract: A computer case having improved accessibility to heat dissipation and expansions, whereby the case provides a space for installing a motherboard, and the case at least having a front panel, a top panel which is mutually perpendicular to the front panel, a rear panel, and a motherboard installation area, wherein the front panel and the rear panel are mutually parallel and respectively provided with at least one inlet fan and at least one outlet fan, an I/O port group included in the motherboard is correspondingly installed on the top panel of the case, such that a video card is in direct correspondence with the inlet fan (the outlet fan) of the rear (front) panel, and the video card faces an air inlet or an air outlet of the inlet fan or the outlet fan with a maximum area, thereby achieving high heat dissipation efficiency as well.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 15, 2020
    Inventor: Mike Huang
  • Publication number: 20190316534
    Abstract: Systems and methods for controlling an engine airpath include receiving, at a supervisory controller, an engine speed corresponding to a present engine speed, a fuel target corresponding to a request for torque from a driver and one or more state estimates generated by an estimator. The supervisory controller predicts, over a prediction horizon, a constraint violation in response to the engine speed, the fuel target, and the one or more state estimates using a prediction model, adjusts an EGR rate target to a modified value, when the constraint violation is predicted, and maintains the EGR rate target at a nominal value when the constraint violation is not predicted. A nonlinear predictive controller generates one or more actuator commands based on the EGR rate target, where the one or more actuator commands control an engine actuator such that an EGR rate of the engine airpath tracks the EGR rate target.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 17, 2019
    Applicants: Toyota Motor Engineering & Manuacturing North America, Inc., The Regents of the University of Michigan
    Inventors: Dominic Liao-McPherson, Ilya Kolmanovsky, Mike Huang, Shinhoon Kim
  • Patent number: 10422290
    Abstract: Systems and methods for controlling an engine airpath include receiving, at a supervisory controller, an engine speed corresponding to a present engine speed, a fuel target corresponding to a request for torque from a driver and one or more state estimates generated by an estimator. The supervisory controller predicts, over a prediction horizon, a constraint violation in response to the engine speed, the fuel target, and the one or more state estimates using a prediction model, adjusts an EGR rate target to a modified value, when the constraint violation is predicted, and maintains the EGR rate target at a nominal value when the constraint violation is not predicted. A nonlinear predictive controller generates one or more actuator commands based on the EGR rate target, where the one or more actuator commands control an engine actuator such that an EGR rate of the engine airpath tracks the EGR rate target.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 24, 2019
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents of the University of Michigan
    Inventors: Dominic Liao-McPherson, Ilya Kolmanovsky, Mike Huang, Shinhoon Kim
  • Publication number: 20190107072
    Abstract: Methods and systems for use of model predictive control (MPC) controllers utilizing hybrid, quadratic solvers to solve a linear feasibility problem corresponding to a nonlinear problem for an internal combustion engine plant such as a diesel engine air path. The MPC solves a convex, quadratic cost function having optimization variables and constraints and directs the plant per the output solutions to optimize plant operation while adhering to regulations and constraints. The problem includes a combination of iterative and direct calculations in the primal space depending on whether a partial step (iterative) or a full step (direct) is attempted. Further, primal and dual space array matrices are pre-computed and stored offline and are retrieved via use of a unique identifier associated with a specific active set for a set of constraints. Such hybrid and/or offline calculations allow for a reduction in computational power while still maintaining accuracy of solution results.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents Of The University Of Michigan
    Inventors: Jason R. Rodgers, Mike Huang, Ilya Kolmanovsky
  • Patent number: 10190522
    Abstract: Methods and systems for use of model predictive control (MPC) controllers utilizing hybrid, quadratic solvers to solve a linear feasibility problem corresponding to a nonlinear problem for an internal combustion engine plant such as a diesel engine air path. The MPC solves a convex, quadratic cost function having optimization variables and constraints and directs the plant per the output solutions to optimize plant operation while adhering to regulations and constraints. The problem includes a combination of iterative and direct calculations in the primal space depending on whether a partial step (iterative) or a full step (direct) is attempted. Further, primal and dual space array matrices are pre-computed and stored offline and are retrieved via use of a unique identifier associated with a specific active set for a set of constraints. Such hybrid and/or offline calculations allow for a reduction in computational power while still maintaining accuracy of solution results.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: January 29, 2019
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents Of The University Of Michigan
    Inventors: Jason R. Rodgers, Mike Huang, Ilya Kolmanovsky
  • Patent number: 9989001
    Abstract: A discrete time rate-based model predictive controller for air path control for a diesel engine regulates VGT position and EGR valve position to specified set points by coordinated control of intake manifold air pressure and EGR rate. The controller may be configured to measure or estimate at least one of the intake manifold pressure and EGR rate. A non-linear discrete time rate-based predictive model may be used, as developed by the controller.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 5, 2018
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents of the University of Michigan
    Inventors: Mike Huang, Ilya Kolmanovsky
  • Publication number: 20170363032
    Abstract: Methods and systems for use of model predictive control (MPC) controllers utilizing hybrid, quadratic solvers to solve a linear feasibility problem corresponding to a nonlinear problem for an internal combustion engine plant such as a diesel engine air path. The MPC solves a convex, quadratic cost function having optimization variables and constraints and directs the plant per the output solutions to optimize plant operation while adhering to regulations and constraints. The problem includes a combination of iterative and direct calculations in the primal space depending on whether a partial step (iterative) or a full step (direct) is attempted. Further, primal and dual space array matrices are pre-computed and stored offline and are retrieved via use of a unique identifier associated with a specific active set for a set of constraints. Such hybrid and/or offline calculations allow for a reduction in computational power while still maintaining accuracy of solution results.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 21, 2017
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents Of The University Of Michigan
    Inventors: Jason R. Rodgers, Mike Huang, Ilya Kolmanovsky
  • Patent number: 9581080
    Abstract: A rate based model predictive controller for air path control for a diesel engine regulates turbine lift and EGR valve flow rate to specified set points by coordinated control of intake manifold air pressure and EGR valve flow rate. The controller utilizes a rate-based reduced order linear model for model predictive control.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 28, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents of the University of Michigan
    Inventors: Mike Huang, Ilya V Kolmanovsky
  • Patent number: 9562484
    Abstract: A rate based model predictive controller and method for air path control for a diesel engine regulates intake manifold pressure (MAP) and EGR valve flow rate to specified set points by coordinated control of a variable geometry turbine (VGT) and EGR valve position. A decay and a flexible Lyapunov function is enforced on the rate based model predictive controller for a single step prediction and control arisen.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 7, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents of the University of Michigan
    Inventors: Mike Huang, Ilya V. Kolmanovsky
  • Publication number: 20160076473
    Abstract: A discrete time rate-based model predictive controller for air path control for a diesel engine regulates VGT position and EGR valve position to specified set points by coordinated control of intake manifold air pressure and EGR rate. The controller may be configured to measure or estimate at least one of the intake manifold pressure and EGR rate. A non-linear discrete time rate-based predictive model may be used, as developed by the controller.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Mike Huang, Ilya Kolmanovsky