Patents by Inventor Mike Ming Yu Chen

Mike Ming Yu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10045530
    Abstract: The present disclosure provides pheromone compositions. In some aspects, the compositions taught herein comprise a pheromone chemically corresponding to the pheromone naturally produced by a given insect, along with at least one positional isomer of said pheromone. In various aspects, pheromone compositions of the present disclosure are able to modulate the response of the insect based on the ratio of natural pheromone to its positional isomer.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: August 14, 2018
    Assignee: Provivi, Inc.
    Inventors: Mike Ming Yu Chen, Pedro Coelho, Peter Meinhold, Toni M. Lee
  • Publication number: 20170135343
    Abstract: The present disclosure provides pheromone compositions. In some aspects, the compositions taught herein comprise a pheromone chemically corresponding to the pheromone naturally produced by a given insect, along with at least one positional isomer of said pheromone. In various aspects, pheromone compositions of the present disclosure are able to modulate the response of the insect based on the ratio of natural pheromone to its positional isomer.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 18, 2017
    Inventors: Mike Ming Yu CHEN, Pedro COELHO, Peter MEINHOLD, Toni M. LEE
  • Patent number: 7001499
    Abstract: A process for electroplating and annealing thin-films of nickel-iron alloys having from 63% to 81% iron content by weight to produce pole pieces having saturation flux density (BS) in the range from 1.9 to 2.3 T (19 to 23 kG) with acceptable magnetic anisotropy and magnetostriction and a coercivity (HC) no higher than 160 A/m (2 Oe). The desired alloy layer properties, including small crystal size and minimal impurity inclusions, can be produced by including higher relative levels of Fe++ ions in the electroplating bath while holding the bath at a lower temperature while plating from a suitable seed layer. The resulting alloy layer adopts a small crystal size (BCC) without significant inclusion of impurities, which advantageously permits annealing to an acceptable HC while retaining the high BS desired.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: February 21, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Mike Ming Yu Chen, Thomas Edward Dinan, April Hixson-Goldsmith, Murali Ramasubramanian, Neil Leslie Robertson
  • Patent number: 6876507
    Abstract: A thin-film write head employing pole pieces formed of an electroplated body-centered cubic (BCC) nickel-iron alloy with a saturation flux density (BS) of 1.9 to 2.3 T (19 to 23 kG) and an acceptable coercivity (HC) of about 80 to about 160 A/m (1-2 Oe). The iron content of the electroplated nickel-iron alloy is from 64% to 81% by weight. The two-layer pole fabrication process holds magnetic anisotropy and coercivity to useable values while improving saturation flux density and optimizing magnetostriction. This is accomplished by first electroplating a BCC nickel-iron layer onto an underlying seed layer and then annealing the two layers to reduce coercivity to less than about 160 amps/meter and raise magnetization to acceptable levels.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Mike Ming Yu Chen, Thomas Edward Dinan, Paul Phong Nguyen, Neil Leslie Robertson
  • Publication number: 20030137767
    Abstract: A thin-film write head employing pole pieces formed of an electroplated body-centered cubic (BCC) nickel-iron alloy with a saturation flux density (BS) of 1.9 to 2.3 T (19 to 23 kG) and an acceptable coercivity (HC) of about 80 to about 160 A/m (1-2 Oe). The iron content of the electroplated nickel-iron alloy is from 64% to 81% by weight. The two-layer pole fabrication process holds magnetic anisotropy and coercivity to useable values while improving saturation flux density and optimizing magnetostriction. This is accomplished by first electroplating a BCC nickel-iron layer onto an underlying seed layer and then annealing the two layers to reduce coercivity to less than about 160 amps/meter and raise magnetization to acceptable levels.
    Type: Application
    Filed: January 18, 2002
    Publication date: July 24, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mike Ming Yu Chen, Thomas Edward Dinan, Paul Phong Nguyen, Neil Leslie Robertson
  • Publication number: 20030136683
    Abstract: A process for electroplating and annealing thin-films of nickel-iron alloys having from 63% to 81% iron content by weight to produce pole pieces having saturation flux density (BS) in the range from 1.9 to 2.3 T (19 to 23 kG) with acceptable magnetic anisotropy and magnetostriction and a coercivity (HC) no higher than 160 A/m (2 Oe). The desired alloy layer properties, including small crystal size and minimal impurity inclusions, can be produced by including higher relative levels of Fe++ ions in the electroplating bath while holding the bath at a lower temperature while plating from a suitable seed layer. The resulting alloy layer adopts a small crystal size (BCC) without significant inclusion of impurities, which advantageously permits annealing to an acceptable HC while retaining the high BS desired.
    Type: Application
    Filed: January 18, 2002
    Publication date: July 24, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mike Ming Yu Chen, Thomas Edward Dinan, Neil Leslie Robertson