Patents by Inventor Mike S. H. Chu

Mike S. H. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8305731
    Abstract: Multilayer ceramic chip capacitors (MLCC's) which satisfy X7R TCC requirements and which are compatible with silver-palladium internal electrodes. The MLCC's exhibit desirable dielectric properties—high capacitance, low dissipation factor, high insulation resistance, stable TCC—and excellent performance on highly accelerated life testing, and good resistance to dielectric breakdown. The dielectric layers include a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, barium, titanium, praseodymium, cerium, tungsten, neodymium, tungsten, tin, niobium, copper, and/or manganese in various combinations. The dielectric ceramic materials herein can be fired at less than 1150° C. with an inner electrode having 70 wt % or more Ag and 30 wt % or less Pd to form an MLCC.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 6, 2012
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mike S. H. Chu
  • Patent number: 8114801
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 14, 2012
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Publication number: 20110090619
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Application
    Filed: November 15, 2010
    Publication date: April 21, 2011
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Patent number: 7858548
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 28, 2010
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Publication number: 20100220427
    Abstract: Multilayer ceramic chip capacitors (MLCC's) which satisfy X7R TCC requirements and which are compatible with silver-palladium internal electrodes. The MLCC's exhibit desirable dielectric properties—high capacitance, low dissipation factor, high insulation resistance, stable TCC—and excellent performance on highly accelerated life testing, and good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, barium, titanium, praseodymium, cerium, tungsten, neodymium, tungsten, tin, niobium, copper, and/or manganese in various combinations. The dielectric ceramic materials herein can be fired at less than 1150° C. with an inner electrode having 70 wt % or more Ag and 30 wt % or less Pd to form an MLCC.
    Type: Application
    Filed: October 27, 2008
    Publication date: September 2, 2010
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mike S. H. Chu
  • Patent number: 7521390
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R and BX requirements and which are compatible with silver-palladium internal electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, cerium, tungsten, copper, manganese, neodymium, niobium, silver, barium, silicon and nickel in various combinations. The dielectric ceramic materials herein can be sintered together (fired) at less than 1000° C. with an inner electrode having more than 80 wt % Ag and less than 20 wt % Pd to form a multilayer ceramic capacitor (MLCC).
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mike S. H. Chu
  • Publication number: 20080218935
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R and BX requirements and which are compatible with silver-palladium internal electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, cerium, tungsten, copper, manganese, neodymium, niobium, silver, barium, silicon and nickel in various combinations. The dielectric ceramic materials herein can be sintered together (fired) at less than 1000° C. with an inner electrode having more than 80 wt % Ag and less than 20 wt % Pd to form a multilayer ceramic capacitor (MLCC).
    Type: Application
    Filed: March 5, 2007
    Publication date: September 11, 2008
    Applicant: Ferro Corporation
    Inventors: Walter J. Symes, Mike S.H. Chu
  • Publication number: 20080063881
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 13, 2008
    Inventors: Walter J. Symes, Mohammed H. Megherhi, Elisabeth W.J. Romer, Mike S.H. Chu, Wilibrordus J.L.M.J Coppens
  • Patent number: 7318897
    Abstract: The present invention provides a method of removing spectator ions and contaminants from aqueous suspensions of solid particles. In accordance with the method of the invention, the solid particles are transported across a phase boundary into a non-polar organic solvent, leaving the spectator ions and contaminants in the aqueous phase. To facilitate the efficient transportation of the solid particles across the phase boundary, the surface of the solid particles is coated with an amphiphilic polyelectrolyte. If desired, the solid particles can be recovered from the organic phase by evaporating the organic solvent.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: January 15, 2008
    Assignees: Ferro Corporation, The Penn State Research Foundation
    Inventors: Xiangdong Feng, Christopher J. Szepesi, Heber E. Rast, III, Mike S. H. Chu, James H. Adair
  • Patent number: 7230817
    Abstract: Multilayer ceramic chip capacitors which satisfy Y5V requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel, copper, and alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise BaTiO3 doped with other metal oxides such as MgO, CaO, ZnO, MnO2, ZrO2, SiO2, Nd2O3, Nb2O5, and Y2O3.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 12, 2007
    Assignee: Ferro Corporation
    Inventors: Mohammed H. Megherhi, Mike S. H. Chu, Daniel E. McCauley, Elizabeth W. Römer, Willibrordus J. Coppens, Knuth Albertsen
  • Patent number: 7161795
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as copper and copper alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a composite oxide formed by calcining rare earth titanates, barium titanate, together with other metal oxides such as MgO, CaO, ZnO, MnO2, ZrO2, SiO2, Ga2O3, Nd2O3, Nb2O5, and Y2O3.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 9, 2007
    Assignee: Ferro Corporation
    Inventors: Mohammed H. Megherhi, Walter J. Symes, Jr., Mike S. H. Chu
  • Patent number: 6828266
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R requirements and which are compatible with reducing-atmosphere sintering conditions so that non-noble metals such as nickel, copper, and alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers preferably contain BaTiO3 as the major component and Mn3O4 Y2O3, Ho2O3, CaCO3, SiO2, B2O3, Al2O3, MgO, and CaO as minor constituents. They are batched in a proportion that there are preferably present 99.00 to 98.5 wt. % BaTiO3, 0.336 to 0.505 wt. % Mn3O4, 0.198 to 0.296 wt. % Y2O3, 0.132 to 0.198 wt. % Ho2O3, 0.199 to 0.299 wt. % CaCO3, 0.057 to 0.085 wt. % SiO2, 0.039 to 0.058 wt. % B2O3, 0.018 to 0.027 wt. % Al2O3, 0.016 to 0.025 wt. % MgO and 0.005 to 0.007 wt.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Ferro Corporation
    Inventors: Hyun Park, Daniel E. McCauley, Mike S. H. Chu
  • Publication number: 20040229746
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R requirements and which are compatible with reducing-atmosphere sintering conditions so that non-noble metals such as nickel, copper, and alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers preferably contain BaTiO3 as the major component and Mn3O4, Y2O3, Ho2O3, CaCO3, SiO2, B2O3, Al2O3, MgO, and CaO as minor constituents. They are batched in a proportion that there are preferably present 99.00 to 98.5 wt. % BaTiO3, 0.336 to 0.505 wt. % Mn3O4, 0.198 to 0.296 wt. % Y2O3, 0.132 to 0.198 wt. % Ho2O3, 0.199 to 0.299 wt. % CaCO3, 0.057 to 0.085 wt. % SiO2, 0.039 to 0.058 wt. % B2O3, 0.018 to 0.027 wt. % Al2O3, 0.016 to 0.025 wt. % MgO and 0.005 to 0.007 wt.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Applicant: Ferro Corporation
    Inventors: Hyun Park, Daniel E. McCauley, Mike S. H. Chu
  • Patent number: 6185087
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel, copper, and alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers preferably contain BaTiO3 as the major component and CaTiO3, BaO, CaO, SrO, Si02, MnO2, Y2O3, and CoO as minor components in such proportions so that there are present 0.1 to 4 mol % CaTiO3, 0.1 to 2 mol % BaO, 0 to 1 mol % CaO, 0 to 1 mol % SrO, 0.1 to 5 mol % SiO2, 0.01 to 2 mol % MnO2, 0.1 to 3 mol % Y2O3, and 0.01 to 1 mol % CoO. The preferred form of the invention may be sintered in the temperature range 1,250 to 1,400° C.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: February 6, 2001
    Assignees: Kemet Electronics Corp., Ferro Electronic Materials Inc.
    Inventors: Hyun D. Park, Joseph D. Nance, Mike S. H. Chu, Yuval Avniel
  • Patent number: 5550092
    Abstract: A sinterable ceramic composition which comprises a barium titanate based dielectric precursor powder which has a temperature coefficient of capacitance, TC, of .+-.15% over the temperature range -55.degree. to 125.degree. C., in admixture with from 0.25 to 2.0% by weight of an additive which is selected from the group consisting of ZrSiO.sub.4, Al.sub.2 O.sub.3, SiO.sub.2, precursors therefor and mixtures thereof, the composition having an average particle size in the range of from 0.6 to 0.8 micrometers and, when fired, having a dielectric constant of above 2500, a TC of .+-.15% over the temperature range of -55.degree. to +125.degree. C. and a porosity of less than 0.7% with no pores greater than 3.5 micrometers average diameter.
    Type: Grant
    Filed: February 10, 1995
    Date of Patent: August 27, 1996
    Assignee: Tam Ceramics Inc.
    Inventors: Mike S.-H. Chu, John Bultitude, Christopher Hood
  • Patent number: 5362693
    Abstract: The present invention provides ceramic compositions for preparing multi-layer capacitors (MLCs) having high dielectric constants between about 3000 and 4700 and stable temperature coefficients (TC) prepared from high purity barium titanate, niobium pentoxide, and cobalt oxide.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: November 8, 1994
    Assignee: Tam Ceramics, Inc.
    Inventors: Mike S. H. Chu, Susan E. Corah
  • Patent number: 4882305
    Abstract: The present invention provides ceramic compositions for preparing multi-layer capacitors (MLCs) having high dielectric constants between about 3000 and 4700 and stable temperature coefficients (TC) prepared from high purity barium titanate, niobium pentoxide and cobalt oxide.
    Type: Grant
    Filed: October 9, 1987
    Date of Patent: November 21, 1989
    Assignee: TAM Ceramics, Inc.
    Inventors: Mike S. H. Chu, Charles E. Hodgkins, Terence C. Dean
  • Patent number: 4540676
    Abstract: A low temperature fired ceramic dielectric composition in which the dielectric constant does not vary from its base value of over 2400 by more than 15 percent over a wide temperature range. A base ceramic preparation (a) and a ceramic flux (b), each consisting essentially of metal oxides or precursors thereof to provide in oxide form (a) 98.0 to 99 weight percent barium titanate, from about 0.97 to about 1.54 weight percent niobium pentoxide and from about 0.19 to about 0.32 weight percent cobalt oxide; (b) from about 16 to about 60 weight percent bismuth titanate, about 8 to about 52 weight percent lead titanate, about 18 to about 35 weight percent zinc oxide and about 5 to about 11 weight percent boron oxide. Manganese dioxide or precursor thereof in amount of from about 0 to 0.
    Type: Grant
    Filed: May 23, 1984
    Date of Patent: September 10, 1985
    Assignee: TAM Ceramics
    Inventors: Mike S. H. Chu, Charles E. Hodgkins, Daniel C. Rose