Patents by Inventor Mike Schwarz

Mike Schwarz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952263
    Abstract: A micromechanical sensor device and manufacturing method. The micromechanical sensor device is provided with a cap substrate, which has a first front side and a first back side, and which has a through-opening as a media entry region; and with a sensor substrate, which has a second front side and a second back side, and which has, on the second front side, a sensor region that is embedded in an island-like region suspended on the remaining sensor substrate. The island-like region is mechanically decoupled from the remaining sensor substrate by a lateral stress-relief trench and by a cavity situated in the sensor substrate, underneath the island-like region. The first back side is bonded to the second front side so that the through opening is situated above the sensor region. The sensor region is covered by a gel, which fills the through-opening and the stress-relief trench at least partially.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: April 9, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Mike Schwarz, Pascal Gieschke, Valentina Kramer-Sinzinger
  • Patent number: 11608264
    Abstract: A method for manufacturing a substrate including a region, which is mechanically decoupled from a support and has at least one component situated on the region; at least one recess being introduced on a front side of the substrate; an etching pattern being prepared on a back side of the substrate and etched anisotropically in such a manner, that vertical channels are produced on the back side of the substrate; and subsequently, a cavity being introduced at the back side of the substrate; the at least one recess on the front side of the substrate being connected to the cavity on the back side of the substrate; and in at least one region between the front side of the substrate and the cavity, at least two recesses or at least two segments of a recess being interconnected by at least one channel.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: March 21, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Arne Dannenberg, Mike Schwarz, Thomas Friedrich
  • Patent number: 11486782
    Abstract: A micromechanical device that includes a carrier substrate; a sensor device that is situated on the carrier substrate and spaced apart from a surface section of the carrier substrate with the aid of spring elements in such a way that the sensor device is oscillatable relative to the surface section; and at least one stopper element, situated on the sensor device and/or on the surface section of the carrier substrate, which limits a deflection of the sensor device in the direction of the surface section.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: November 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Friedjof Heuck, Mike Schwarz, Thomas Friedrich, Volkmar Senz
  • Patent number: 11326969
    Abstract: A micromechanical sensor includes a substrate having a cavity; a flexible diaphragm spanning the cavity; and a lever element that spans the diaphragm and has a first and second end section on opposite sides of a center section. A first joint element is between the first end section and the substrate and a second joint element is between the center section and the diaphragm. The lever element can be pivoted due to a deflection of the diaphragm. Two capacitive sensors are provided, each having two electrodes, one electrode of each sensor being mounted at one of the end sections of the lever element, and the other being mounted on the substrate. The electrodes are disposed so that distances between the electrodes of different sensors are influenced oppositely when the lever element is pivoted. Also, an actuator is provided for applying an actuating force between the lever element and the substrate.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: May 10, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Zehringer, Andreas Duell, Arne Dannenberg, Helmut Grutzeck, Jochen Franz, Mike Schwarz, Soeren Zimmermann, Stephan Oppl
  • Publication number: 20220081281
    Abstract: A micromechanical sensor device and manufacturing method. The micromechanical sensor device is provided with a cap substrate, which has a first front side and a first back side, and which has a through-opening as a media entry region; and with a sensor substrate, which has a second front side and a second back side, and which has, on the second front side, a sensor region that is embedded in an island-like region suspended on the remaining sensor substrate. The island-like region is mechanically decoupled from the remaining sensor substrate by a lateral stress-relief trench and by a cavity situated in the sensor substrate, underneath the island-like region. The first back side is bonded to the second front side so that the through opening is situated above the sensor region. The sensor region is covered by a gel, which fills the through-opening and the stress-relief trench at least partially.
    Type: Application
    Filed: February 5, 2020
    Publication date: March 17, 2022
    Inventors: Mike Schwarz, Pascal Gieschke, Valentina Kramer-Sinzinger
  • Publication number: 20220009769
    Abstract: The invention relates to a MEMS sensor, including a deflectably situated functional layer, a conversion device for converting a deflection of the functional layer into an electrical signal, the conversion device including at least one electrical element, the at least one electrical element being at least partially electrically connected to a first area, and the first area being at least partially electrically connected to a second area, and the first and second areas and/or the first area and the at least one electrical element being electrically operable in a reverse direction and a forward direction, and a control unit, the control unit being designed to at least partially operate the at least one electrical element and the first area and/or the first area and the second area in the forward direction to provide thermal energy.
    Type: Application
    Filed: January 20, 2020
    Publication date: January 13, 2022
    Inventors: Arne Dannenberg, Mike Schwarz
  • Patent number: 11060937
    Abstract: A micromechanical pressure sensor, having—a pressure sensor core including a sensor diaphragm and a cavity developed above the sensor diaphragm; and—a pressure sensor frame; and—a spring element for the mechanical connection of the pressure sensor core to the pressure sensor frame being developed in such a way that a mechanical robustness is maximized and a coupling of stress from the pressure sensor frame into the sensor pressure core is minimized.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: July 13, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Ferenc Lukacs, Arne Dannenberg, Friedjof Heuck, Helmut Grutzeck, Mike Schwarz, Robert Maul, Tamas Dögei, Thomas Friedrich, Volkmar Senz
  • Publication number: 20210131897
    Abstract: A micromechanical device that includes a carrier substrate; a sensor device that is situated on the carrier substrate and spaced apart from a surface section of the carrier substrate with the aid of spring elements in such a way that the sensor device is oscillatable relative to the surface section; and at least one stopper element, situated on the sensor device and/or on the surface section of the carrier substrate, which limits a deflection of the sensor device in the direction of the surface section.
    Type: Application
    Filed: July 16, 2018
    Publication date: May 6, 2021
    Inventors: Friedjof Heuck, Mike Schwarz, Thomas Friedrich, Volkmar Senz
  • Publication number: 20210130168
    Abstract: A method for manufacturing a substrate including a region, which is mechanically decoupled from a support and has at least one component situated on the region; at least one recess being introduced on a front side of the substrate; an etching pattern being prepared on a back side of the substrate and etched anisotropically in such a manner, that vertical channels are produced on the back side of the substrate; and subsequently, a cavity being introduced at the back side of the substrate; the at least one recess on the front side of the substrate being connected to the cavity on the back side of the substrate; and in at least one region between the front side of the substrate and the cavity, at least two recesses or at least two segments of a recess being interconnected by at least one channel.
    Type: Application
    Filed: December 15, 2017
    Publication date: May 6, 2021
    Inventors: Arne Dannenberg, Mike Schwarz, Thomas Friedrich
  • Patent number: 10914675
    Abstract: A sensor apparatus having a sensor unit. The sensor unit including pixel assemblages on a substrate upper side of a substrate located on a lower side of the sensor unit; a cap, on the substrate upper side, which covers the pixel assemblages, a cavity being formed between the substrate upper side and the cap; a plurality of filters that are transparent to wavelength regions that differ from one another, exactly one pixel assemblage being associated with each filter; and the filters being on the cap so that the infrared radiation propagated through an absorption gap of the sensor apparatus and the upper side of the sensor unit is detectable, through the respective filter, by the pixel assemblage associated with the respective filter; and a coating made of a light-absorbing and/or light-reflecting material being configured at least locally on a part of the cap which is not covered by the filters.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: February 9, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Mike Schwarz, Thomas Friedrich, Timon Brueckner
  • Publication number: 20200399116
    Abstract: A MEMS element is provided. The MEMS element includes: a substrate; a first passivation layer arranged on the substrate; a metal layer arranged on the first passivation layer; a second passivation layer arranged on the metal layer and on the first passivation layer; and a punch element, an electrically conductive diffusion-blocking layer being arranged on the punch element and on the second passivation layer, a first bonding element being arranged on the punch element.
    Type: Application
    Filed: March 7, 2019
    Publication date: December 24, 2020
    Inventors: Friedjof Heuck, Jochen Tomaschko, Peter Schmollngruber, Thomas Friedrich, Volkmar Senz, Mike Schwarz
  • Patent number: 10775253
    Abstract: A method for manufacturing a micromechanical component having a disengaged pressure sensor device includes: configuring an electrically conductive sacrificial element in or on a first outer surface of a first substrate; applying a second substrate on or upon the outer surface of the first substrate over the sacrificial element; configuring a pressure sensor device by anodic etching of the second substrate; configuring in the second substrate at least one trench that extends to the sacrificial element; and at least partly removing the sacrificial element in order to disengage the pressure sensor device.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: September 15, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Heiko Stahl, Arne Dannenberg, Daniel Haug, Daniel Kaercher, Michaela Mitschke, Mike Schwarz, Timo Lindemann
  • Publication number: 20200225108
    Abstract: A method for manufacturing a micromechanical component having a disengaged pressure sensor device includes: configuring an electrically conductive sacrificial element in or on a first outer surface of a first substrate; applying a second substrate on or upon the outer surface of the first substrate over the sacrificial element; configuring a pressure sensor device by anodic etching of the second substrate; configuring in the second substrate at least one trench that extends to the sacrificial element; and at least partly removing the sacrificial element in order to disengage the pressure sensor device.
    Type: Application
    Filed: August 24, 2017
    Publication date: July 16, 2020
    Applicant: Robert Bosch GmbH
    Inventors: Heiko Stahl, Arne Dannenberg, Daniel Haug, Daniel Kaercher, Michaela Mitschke, Mike Schwarz, Timo Lindemann
  • Publication number: 20200088598
    Abstract: A micromechanical sensor includes a substrate having a cavity; a flexible diaphragm that spans the cavity; and a lever element that spans the diaphragm and has a first and a second end section, the end sections lying on opposite sides of a center section. A first joint element is fitted between the first end section and the substrate and a second joint element is fitted between the center section and the diaphragm, so that the lever element is able to be pivoted due to a deflection of the diaphragm. In addition, two capacitive sensors are provided, each having two electrodes, one electrode of each sensor being mounted at one of the end sections of the lever element, and the other being mounted on the substrate. The electrodes of the sensors are disposed in such a way that distances between the electrodes of different sensors are influenced oppositely when the lever element is pivoted. Moreover, the sensor includes an actuator for applying an actuating force between the lever element and the substrate.
    Type: Application
    Filed: December 8, 2017
    Publication date: March 19, 2020
    Inventors: Stefan Zehringer, Andreas Duell, Arne Dannenberg, Helmut Grutzeck, Jochen Franz, Mike Schwarz, Soeren Zimmermann, Stephan Oppl
  • Publication number: 20190376864
    Abstract: A micromechanical pressure sensor, having —a pressure sensor core including a sensor diaphragm and a cavity developed above the sensor diaphragm; and —a pressure sensor frame; and —a spring element for the mechanical connection of the pressure sensor core to the pressure sensor frame being developed in such a way that a mechanical robustness is maximized and a coupling of stress from the pressure sensor frame into the sensor pressure core is minimized.
    Type: Application
    Filed: February 21, 2018
    Publication date: December 12, 2019
    Inventors: Ferenc Lukacs, Arne Dannenberg, Friedjof Heuck, Helmut Grutzeck, Mike Schwarz, Robert Maul, Tamas Dögei, Thomas Friedrich, Volkmar Senz
  • Patent number: 10442681
    Abstract: A micromechanical system including a sensitive element, the system including a first area in which the sensitive element is situated, and a second area which at least partially surrounds the first area. Furthermore, the system includes a holding element having an elastic property, which joins the first area to the second area, and a joining material, with the aid of which the second area may be joined to a substrate. A spacing area is provided between the first area and the second area. The joining material extends into the spacing area so that a possible movement of the first area caused by the elastic property of the holding element is limited.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 15, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Daniel Haug, Hans-Peter Baer, Mike Schwarz, Volkmar Senz
  • Publication number: 20180250287
    Abstract: An abuse deterrent opioid formulation for rectal use. The formulation contains a therapeutically effective amount of the opioid buprenorphine or salts and homologs thereof; and either a gel with a diminishing agent or a suppository base with a diminishing agent into which the opioid buprenorphine is mixed.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 6, 2018
    Inventors: A. Mike Schwarz, Daniel R. Kimbell, Charles William Stark
  • Publication number: 20180237290
    Abstract: A micromechanical system including a sensitive element, the system including a first area in which the sensitive element is situated, and a second area which at least partially surrounds the first area. Furthermore, the system includes a holding element having an elastic property, which joins the first area to the second area, and a joining material, with the aid of which the second area may be joined to a substrate. A spacing area is provided between the first area and the second area. The joining material extends into the spacing area so that a possible movement of the first area caused by the elastic property of the holding element is limited.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 23, 2018
    Inventors: Daniel Haug, Hans-Peter Baer, Mike Schwarz, Volkmar Senz
  • Publication number: 20180188157
    Abstract: A sensor apparatus having a sensor unit. The sensor unit including pixel assemblages on a substrate upper side of a substrate located on a lower side of the sensor unit; a cap, on the substrate upper side, which covers the pixel assemblages, a cavity being formed between the substrate upper side and the cap; a plurality of filters that are transparent to wavelength regions that differ from one another, exactly one pixel assemblage being associated with each filter; and the filters being on the cap so that the infrared radiation propagated through an absorption gap of the sensor apparatus and the upper side of the sensor unit is detectable, through the respective filter, by the pixel assemblage associated with the respective filter; and a coating made of a light-absorbing and/or light-reflecting material being configured at least locally on a part of the cap which is not covered by the filters.
    Type: Application
    Filed: May 25, 2016
    Publication date: July 5, 2018
    Inventors: Mike Schwarz, Thomas Friedrich, Timon Brueckner
  • Publication number: 20110153164
    Abstract: A method for activating at least one safety device that has a first step of acquiring at least two features from at least one signal of a crash sensor system in order to form a feature vector from the features acquired. In a second method step, the formed feature vector is subsequently classified with the aid of a classifier based on the statistical learning theory in order to classify the feature vector in one of at least three possible feature classes. As a third method step, the safety devices are activated in accordance with an activation instruction for the feature class in which the feature vector was classified.
    Type: Application
    Filed: February 16, 2009
    Publication date: June 23, 2011
    Inventors: Marcus Hiemer, Mike Schwarz