Patents by Inventor Mike Von den Hoff

Mike Von den Hoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220307990
    Abstract: A die screening system may receive die-resolved metrology data for a population of dies on one or more samples from the one or more in-line metrology tools after one or more fabrication steps, where the die-resolved metrology data includes images generated using one or more measurement configurations of the one or more in-line metrology tools. In this way, the die-resolved metrology data provides many measurement channels per die, where a particular measurement channel includes data from a particular pixel of a particular image. The controller may then generate screening data for the population of dies from the die-resolved metrology data, where the screening data includes a subset of the plurality of measurement channels of the die-resolved metrology data, and screen the plurality of dies into two or more disposition classes including at least outlier dies based on variability in the screening data.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 29, 2022
    Inventors: John Charles Robinson, Stilian Pandev, Shifang Li, Mike Von Den Hoff, Justin Lach, Barry Saville, David W. Price, Robert J. Rathert, Chet V. Lenox, Thomas Groos, Oreste Donzella
  • Publication number: 20220196723
    Abstract: Automatically identifying defect-based test coverage gaps in semiconductor devices includes determining a plurality of apparent killer defects on one or more semiconductor devices with a plurality of semiconductor dies based on characterization measurements of the one or more semiconductor devices acquired by one or more semiconductor fabrication subsystems, determining at least one semiconductor die which passes at least one test based on test measurements acquired by one or more test tool subsystems, correlate the characterization measurements with the test measurements to determine at least one apparent killer defect on the at least one semiconductor die which passes the at least one test, and determining one or more gap areas on the one or more semiconductor devices for defect-based test coverage based on the at least one apparent killer defect on the at least one semiconductor die which passes the at least one test.
    Type: Application
    Filed: May 14, 2021
    Publication date: June 23, 2022
    Inventors: David W. Price, Robert J. Rathert, Chet V. Lenox, Kara L. Sherman, Teng Song Lim, Thomas Groos, Mike Von Den Hoff, Oreste Donzella, Narayani Narasimhan, Barry Saville, Justin Lach, John Robinson
  • Patent number: 11293970
    Abstract: An inspection system may include a controller communicatively coupled to one or more in-line sample analysis tools including, but not limited to, an inspection tool or a metrology tool. The controller may identify defects in a population of dies based on data received from at least one of the one or more in-line sample analysis tools, assign weights to the identified defects indicative of predicted impact of the identified defects on reliability of the dies using a weighted defectivity model, generate defectivity scores for the dies in the population by aggregating the weighted defects in the respective dies in the population, and determine a set of outlier dies based on the defectivity scores for the dies in the population, wherein at least some of the set of outlier dies are isolated from the population.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: April 5, 2022
    Assignee: KLA Corporation
    Inventors: David W. Price, Robert J. Rathert, Kara L. Sherman, John Charles Robinson, Mike Von Den Hoff, Barry Saville, Robert Cappel, Oreste Donzella, Naema Bhatti, Thomas Groos, Teng-Song Lim, Doug Sutherland
  • Publication number: 20210215753
    Abstract: An inspection system may include a controller communicatively coupled to one or more in-line sample analysis tools including, but not limited to, an inspection tool or a metrology tool. The controller may identify defects in a population of dies based on data received from at least one of the one or more in-line sample analysis tools, assign weights to the identified defects indicative of predicted impact of the identified defects on reliability of the dies using a weighted defectivity model, generate defectivity scores for the dies in the population by aggregating the weighted defects in the respective dies in the population, and determine a set of outlier dies based on the defectivity scores for the dies in the population, wherein at least some of the set of outlier dies are isolated from the population.
    Type: Application
    Filed: November 23, 2020
    Publication date: July 15, 2021
    Applicant: KLA Corporation
    Inventors: David W. Price, Robert J. Rathert, Kara L. Sherman, John Charles Robinson, Mike Von Den Hoff, Barry Saville, Robert Cappel, Oreste Donzella, Naema Bhatti, Thomas Groos, Teng-Song Lim, Doug Sutherland
  • Patent number: 7418124
    Abstract: Methods that include acquiring aerial images of a reticle for different values of a member of a set of lithographic variables are provided. One method also includes determining a presence of an anomaly in a design pattern of the reticle by comparing at least one pair of the aerial images corresponding to at least two of the different values. A different method includes comparing at least one pair of the aerial images corresponding to at least two of the different values and determining an area on the reticle where a lithography process using the reticle is most susceptible to failure based on the results of the comparison. Another embodiment includes determining a presence of transient repeating defects on the reticle by subtracting non-transient defects from the aerial images and comparing at least one pair of the aerial images corresponding to at least two of the different values.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 26, 2008
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Ingrid B. Peterson, Mike Von den Hoff, Jim Wiley
  • Patent number: 6902855
    Abstract: The invention is a method of determining the presence of an anomaly in qualifying a pattern, patterning process, or patterning apparatus used in the fabrication of microlithographic patterns. A preferred implementation of the method qualifies incoming reticles and process conditions on test wafers to maximize the available usable process window for a given reticle exposure tool combination. Practicing this method on test wafers enables the identification of spatial areas where a process will fail first and candidate regions for carrying out defect inspection and metrology. Other preferred implementations of the method qualify masks, reticles, or other patterns characterized by data bases on which are stored image data acquired by practice of aerial image measurement system (AIMS) or design rule checking (DRC) techniques.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: June 7, 2005
    Assignee: KLA-Tencor Technologies
    Inventors: Ingrid B. Peterson, Mike Von den Hoff
  • Publication number: 20040091142
    Abstract: Methods that include acquiring aerial images of a reticle for different values of a member of a set of lithographic variables are provided. One method also includes determining a presence of an anomaly in a design pattern of the reticle by comparing at least one pair of the aerial images corresponding to at least two of the different values. A different method includes comparing at least one pair of the aerial images corresponding to at least two of the different values and determining an area on the reticle where a lithography process using the reticle is most susceptible to failure based on the results of the comparison. Another embodiment includes determining a presence of transient repeating defects on the reticle by subtracting non-transient defects from the aerial images and comparing at least one pair of the aerial images corresponding to at least two of the different values.
    Type: Application
    Filed: July 15, 2003
    Publication date: May 13, 2004
    Inventors: Ingrid B. Peterson, Mike Von den Hoff, Jim Wiley
  • Publication number: 20040009416
    Abstract: The invention is a method of determining the presence of an anomaly in qualifying a pattern, patterning process, or patterning apparatus used in the fabrication of microlithographic patterns. A preferred implementation of the method qualifies incoming reticles and process conditions on test wafers to maximize the available usable process window for a given reticle exposure tool combination. Practicing this method on test wafers enables the identification of spatial areas where a process will fail first and candidate regions for carrying out defect inspection and metrology. Other preferred implementations of the method qualify masks, reticles, or other patterns characterized by data bases on which are stored image data acquired by practice of aerial image measurement system (AIMS) or design rule checking (DRC) techniques.
    Type: Application
    Filed: August 2, 2002
    Publication date: January 15, 2004
    Inventors: Ingrid B. Peterson, Mike Von den Hoff