Patents by Inventor Mikhaïl Baklanov

Mikhaïl Baklanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190135998
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 9, 2019
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Patent number: 10236162
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 19, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura, Mikhail Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Patent number: 9941151
    Abstract: A method of forming a metallization layer of an IC having a lower via level and an upper trench level is disclosed. In one aspect, the method includes applying a dual damascene process to a stack of two layers. The bottom layer includes a porous low-k dielectric in which the pores have been filled by a template material. The top layer is a template layer. This stack is obtained by depositing a template layer on top of a porous low-k dielectric and annealing in order to let the template material diffuse into the pores of the low-k layer. At the end of the anneal process, a stack of a pore-filled layer and a template layer is obtained. Vias are etched in the low-k layer and trenches are etched in the template layer. The template pore-filling protects the low-k dielectric during plasma etching, metal barrier deposition and metal deposition.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 10, 2018
    Assignees: IMEC vzw, Katholieke Universiteit Leuyen
    Inventors: Liping Zhang, Mikhail Baklanov
  • Publication number: 20180082823
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA, Mikhaïl BAKLANOV, Liping ZHANG, Jean-Francois de Marneffe
  • Patent number: 9859102
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 2, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura, Mikhail Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Publication number: 20170301583
    Abstract: A method of forming a metallization layer of an IC having a lower via level and an upper trench level is disclosed. In one aspect, the method includes applying a dual damascene process to a stack of two layers. The bottom layer includes a porous low-k dielectric in which the pores have been filled by a template material. The top layer is a template layer. This stack is obtained by depositing a template layer on top of a porous low-k dielectric and annealing in order to let the template material diffuse into the pores of the low-k layer. At the end of the anneal process, a stack of a pore-filled layer and a template layer is obtained. Vias are etched in the low-k layer and trenches are etched in the template layer. The template pore-filling protects the low-k dielectric during plasma etching, metal barrier deposition and metal deposition.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 19, 2017
    Inventors: Liping Zhang, Mikhail Baklanov
  • Patent number: 9595422
    Abstract: The disclosed technology generally relates to semiconductor fabrication, and more particularly to plasma etching of dielectric materials having pores. In one aspect, a method for etching a porous material in an environment includes contacting the porous material with an organic gas at a pressure and a temperature. The organic gas is such that at the pressure and the temperature, the organic gas remains in a gas state when outside of the porous material, while the organic gas condenses into an organic liquid upon contacting the porous material. Upon contacting the porous material, the organic gas thereby fills the pores of the porous material with the organic liquid. Subsequent to contacting the porous material, the method additionally includes plasma etch-treating of the porous material having filled pores, thereby evaporating a fraction of the organic liquid filling the pores of the porous material.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: March 14, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven
    Inventors: Mikhaïl Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Publication number: 20170021604
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Patent number: 9492841
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: November 15, 2016
    Assignees: IMEC, St. Petersburg Electrotechnical University
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Publication number: 20160307732
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA, Mikhaïl BAKLANOV, Liping ZHANG, Jean-Francois de Marneffe
  • Publication number: 20160276133
    Abstract: The disclosed technology generally relates to semiconductor fabrication, and more particularly to plasma etching of dielectric materials having pores. In one aspect, a method for etching a porous material in an environment includes contacting the porous material with an organic gas at a pressure and a temperature. The organic gas is such that at the pressure and the temperature, the organic gas remains in a gas state when outside of the porous material, while the organic gas condenses into an organic liquid upon contacting the porous material. Upon contacting the porous material, the organic gas thereby fills the pores of the porous material with the organic liquid. Subsequent to contacting the porous material, the method additionally includes plasma etch-treating of the porous material having filled pores, thereby evaporating a fraction of the organic liquid filling the pores of the porous material.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 22, 2016
    Inventors: Mikhaïl Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Patent number: 9414445
    Abstract: A method for processing a dielectric film on a substrate comprises: depositing a porous dielectric film on a substrate; removing the porogen; stuffing the film with a protective polymeric material; performing at least one intermediate processing step on the stuffed dielectric film; placing the film in a microwave applicator cavity and heating to a first temperature to partially burn out the polymeric material; introducing a controlled amount of a polar solvent into the porosity created by the partial burn out; applying microwave energy to heat the film to a second selected temperature below the boiling point of the solvent to clean away remaining polymeric material; and applying microwave energy to heat the film to a third temperature above the boiling point of the solvent to completely burnout the residues of polymeric material. The interaction of the polar solvent with the microwaves enhances the efficiency of the cleaning process.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 9, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Iftikhar Ahmad, Mikhail Baklanov, Liping Zhang
  • Patent number: 9117666
    Abstract: A method is provided for activating an exposed surface of a porous dielectric layer, the method comprising the steps of: filling with a first liquid at least the pores present in a part of the porous dielectric layer, the part comprising the exposed surface, removing the first liquid selectively from the surface, activating the exposed surface, and removing the first liquid from the bulk part of the porous dielectric layer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 25, 2015
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Quoc Toan Le, Mikhail Baklanov, Yiting Sun, Silvia Armini
  • Publication number: 20150170910
    Abstract: A method is provided for activating an exposed surface of a porous dielectric layer, the method comprising the steps of: filling with a first liquid at least the pores present in a part of the porous dielectric layer, the part comprising the exposed surface, removing the first liquid selectively from the surface, activating the exposed surface, and removing the first liquid from the bulk part of the porous dielectric layer.
    Type: Application
    Filed: November 26, 2014
    Publication date: June 18, 2015
    Inventors: Quoc Toan Le, Mikhail Baklanov, Yiting Sun, Silvia Armini
  • Publication number: 20150076109
    Abstract: A method is provided for treating a surface of a porous material in an environment, the method comprising the steps of contacting a porous material with an organic gas in an environment having a pressure P1 and a temperature T1, wherein the organic gas is such that at the pressure P1 and at the temperature T1 it remains a gas when outside of the porous material but condenses as an organic liquid when in contact with the porous material, thereby filling pores of the porous material with the organic liquid, cooling down the filled porous material to a temperature T2 such that the organic liquid freezes within the pores, thereby sealing the pores with an organic solid, thereby providing a protected porous material, and performing a treatment on the surface.
    Type: Application
    Filed: July 9, 2014
    Publication date: March 19, 2015
    Inventor: Mikhaïl Baklanov
  • Patent number: 8974870
    Abstract: Methods for fabricating porous low-k materials are provided, such as plasma enhanced chemically vapor deposited (PE-CVD) and chemically vapor deposited (CVD) low-k films used as dielectric materials in between interconnect structures in semiconductor devices. More specifically, a new method is provided which results in a low-k material with significant improved chemical stability and improved elastic modulus, for a porosity obtained.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 10, 2015
    Assignee: IMEC
    Inventors: Mikhail Baklanov, Quoc Toan Le, Laurent Souriau, Patrick Verdonck
  • Patent number: 8968864
    Abstract: A method for at least partially sealing a porous material is provided, comprising forming a sealing layer onto the porous material by applying a sealing compound comprising oligomers wherein the oligomers are formed by ageing a precursor solution comprising cyclic carbon bridged organosilica and/or bridged organosilanes. The method is especially designed for low k dielectric porous materials to be incorporated into semiconductor devices.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: March 3, 2015
    Assignees: IMEC, Universiteit Gent
    Inventors: Frederik Goethals, Pascal Van Der Voort, Isabel Van Driessche, Mikhail Baklanov
  • Patent number: 8961803
    Abstract: A method is provided for treating a surface of a porous material in an environment, the method comprising the steps of contacting a porous material with an organic gas in an environment having a pressure P1 and a temperature T1, wherein the organic gas is such that at the pressure P1 and at the temperature T1 it remains a gas when outside of the porous material but condenses as an organic liquid when in contact with the porous material, thereby filling pores of the porous material with the organic liquid, cooling down the filled porous material to a temperature T2 such that the organic liquid freezes within the pores, thereby sealing the pores with an organic solid, thereby providing a protected porous material, and performing a treatment on the surface.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: February 24, 2015
    Assignee: Imec VZW
    Inventor: Mikhaïl Baklanov
  • Publication number: 20140322921
    Abstract: A method for processing a dielectric film on a substrate comprises: depositing a porous dielectric film on a substrate; removing the porogen; stuffing the film with a protective polymeric material; performing at least one intermediate processing step on the stuffed dielectric film; placing the film in a microwave applicator cavity and heating to a first temperature to partially burn out the polymeric material; introducing a controlled amount of a polar solvent into the porosity created by the partial burn out; applying microwave energy to heat the film to a second selected temperature below the boiling point of the solvent to clean away remaining polymeric material; and applying microwave energy to heat the film to a third temperature above the boiling point of the solvent to completely burnout the residues of polymeric material. The interaction of the polar solvent with the microwaves enhances the efficiency of the cleaning process.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 30, 2014
    Inventors: Iftikhar Ahmad, Mikhail Baklanov, Liping Zhang
  • Publication number: 20140291289
    Abstract: A method of etching a low-k material which is capable of decreasing a damage of the low-k material is provided. In the method, the low-k material is etched with a plasma of a mixture gas including NF3 gas and Cl2 gas. Utilization of the mixture gas enables to decrease a damage of the low-k material, enhance an etch rate and selectivity of the low-k material, and reduce the bottom surface roughness and water absorption of the low-k material.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 2, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Frederic LAZZARINO, Shigeru TAHARA, Mikhail KRISHTAB, Mikhail BAKLANOV