Patents by Inventor Mikhail A. Kats

Mikhail A. Kats has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879783
    Abstract: An optical spectrometer uses broadband radiation detectors to measure thermal radiation generated by the varied heating of an object without complex mechanical mechanisms, narrowband filters, or the like. The received thermal radiation is used to deduce spectral qualities of either the thermal radiation emitter or a second object reflecting or transmitting this thermal radiation.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: January 23, 2024
    Inventors: Mikhail A. Kats, Yuzhe Xiao, Chenghao Wan, Jad Salman
  • Publication number: 20220187134
    Abstract: An optical spectrometer uses broadband radiation detectors to measure thermal radiation generated by the varied heating of an object without complex mechanical mechanisms, narrowband filters, or the like. The received thermal radiation is used to deduce spectral qualities of either the thermal radiation emitter or a second object reflecting or transmitting this thermal radiation.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 16, 2022
    Inventors: Mikhail A. Kats, Yuzhe Xiao, Chenghao Wan, Jad Salman
  • Publication number: 20210206652
    Abstract: A method for forming a crystalline material having an anisotropic, quasi-one-dimensional crystal structure is disclosed. In various embodiments, the method includes: mixing a plurality of precursor materials together to form a combined precursor material, the plurality of precursor materials including a transition-metal ion or a main group ion and at least one of an alkaline earth ion or an alkali metal ion; and reacting the combined precursor material to obtain the crystalline material, the crystalline material having a formula ABX3, wherein A is the at least one of the alkaline earth ion or the alkali metal ion and B is the transition-metal ion surrounded by six anions (X), and wherein the quasi-one-dimensional anisotropic crystal provides a birefringence of at least 0.03, defined as the absolute difference in the real part of the complex-refractive-index values along different crystal axes, in at least a portion of one or N both of the visible-wave spectrum or the infrared spectrum.
    Type: Application
    Filed: May 24, 2019
    Publication date: July 8, 2021
    Inventors: Shanyuan Niu, Graham Joe, Mikhail A. Kats, Jayakanth Ravichandran
  • Patent number: 10791304
    Abstract: The functional effect of having additional color-sensing cone types in the human eye is implemented by an encoding of some spectral information differently for the left and right eyes. This different encoding for identical features seen by the left and right eyes is interpreted as a perceptively different feature by the human brain, allowing additional spectral information to be conveyed through the limited tristimulus sensitivity of the human eye.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 29, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Mikhail A. Kats, Bradley Gundlach
  • Patent number: 9952096
    Abstract: A spectral encoder includes a thin layer of lossy dielectric material whose thickness varies transversely from 0 to a thickness of about ?/4n (e.g., <100 nm), where ? is the wavelength of incident radiation and n is the dielectric material's refractive index. The dielectric layer reflects (and/or transmits) light at a wavelength that depends on the layer's thickness. Because the dielectric layer's thickness varies, different parts of the dielectric layer may reflect (transmit) light at different wavelengths. For instance, shining white light on a dielectric layer with a linearly varying thickness may produce a rainbow-like reflected (and/or transmitted) beam. Thus, the spectral encoder maps different wavelengths to different points in space. This mapping can be characterized by a transfer matrix which can be used to determine the spectrum of radiation incident on the spectral encoder from the spatial intensity distribution of the radiation reflected (and/or transmitted) by the spectral encoder.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 24, 2018
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mikhail A. Kats, Romain Blanchard, Patrice Genevet, Federico Capasso
  • Publication number: 20180041737
    Abstract: The functional effect of having additional color-sensing cone types in the human eye is implemented by an encoding of some spectral information differently for the left and right eyes. This different encoding for identical features seen by the left and right eyes is interpreted as a perceptively different feature by the human brain, allowing additional spectral information to be conveyed through the limited tristimulus sensitivity of the human eye.
    Type: Application
    Filed: August 3, 2017
    Publication date: February 8, 2018
    Inventors: Mikhail A. Kats, Bradley Gundlach
  • Publication number: 20150116721
    Abstract: A spectral encoder includes a thin layer of lossy dielectric material whose thickness varies transversely from 0 to a thickness of about ?/4n (e.g., <100 nm), where ? is the wavelength of incident radiation and n is the dielectric material's refractive index. The dielectric layer reflects (and/or transmits) light at a wavelength that depends on the layer's thickness. Because the dielectric layer's thickness varies, different parts of the dielectric layer may reflect (transmit) light at different wavelengths. For instance, shining white light on a dielectric layer with a linearly varying thickness may produce a rainbow-like reflected (and/or transmitted) beam. Thus, the spectral encoder maps different wavelengths to different points in space. This mapping can be characterized by a transfer matrix which can be used to determine the spectrum of radiation incident on the spectral encoder from the spatial intensity distribution of the radiation reflected (and/or transmitted) by the spectral encoder.
    Type: Application
    Filed: June 3, 2013
    Publication date: April 30, 2015
    Inventors: Mikhail A. Kats, Romain Blanchard, Patrice Genevet, Federico Capasso