Patents by Inventor Mikhail Belkin

Mikhail Belkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9246310
    Abstract: A laser source based on a quantum cascade laser array (QCL), wherein the outputs of at least two elements in the array are collimated and overlapped in the far field using an external diffraction grating and a transform lens.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: January 26, 2016
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology
    Inventors: Anish Goyal, Benjamin G. Lee, Christian Pfluegl, Laurent Diehl, Mikhail Belkin, Antonio Sanchez-Rubio, Federico Capasso
  • Publication number: 20150311665
    Abstract: A broadly tunable terahertz source constructed as an external cavity system using a difference-frequency generation quantum cascade laser source. The external cavity system includes an external diffraction grating configured to tune and reflect mid-infrared emission at a first wavelength. The laser includes a mid-infrared feedback grating defined in the laser waveguide of the laser to fix mid-infrared lasing at a second wavelength. Alternatively, two external diffraction gratings may be configured to tune and reflect mid-infrared emission at a first wavelength and a second wavelength. Tunable terahertz radiation is then generated at frequency ?THz=|?1??2|, where ?1 and ?2 are the frequencies of the first and second mid-infrared lasing wavelengths.
    Type: Application
    Filed: April 29, 2015
    Publication date: October 29, 2015
    Inventors: Mikhail Belkin, Karun Vijayraghavan, Yifan Jiang
  • Patent number: 8869602
    Abstract: An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 28, 2014
    Assignee: Anasys Instruments Corp.
    Inventors: Mikhail Belkin, Feng Lu, Vladislav V. Yakolev, Craig Prater, Kevin Kjoller, Markus Raschke
  • Patent number: 8571082
    Abstract: The present invention provides a QCL device with an electrically controlled refractive index through the Stark effect. By changing the electric field in the active area, the energy spacing between the lasing energy levels may be changed and, hence, the effective refractive index in the spectral region near the laser wavelength may be controlled.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 29, 2013
    Assignees: Maxion Technologies, Inc., The Research Foundation of State University of New York, Board of Regents, The University of Texas System
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober, Mikhail Belkin
  • Patent number: 8351481
    Abstract: Methods and apparatus for improved single-mode selection in a quantum cascade laser. In one example, a distributed feedback grating incorporates both index-coupling and loss-coupling components. The loss-coupling component facilitates selection of one mode from two possible emission modes by periodically incorporating a thin layer of “lossy” semiconductor material on top of the active region to introduce a sufficiently large loss difference between the two modes. The lossy layer is doped to a level sufficient to induce considerable free-carrier absorption losses for one of the two modes while allowing sufficient gain for the other of the two modes. In alternative implementations, the highly-doped layer may be replaced by other low-dimensional structures such as quantum wells, quantum wires, and quantum dots with significant engineered intraband absorption to selectively increase the free-carrier absorption losses for one of multiple possible modes so as to facilitate single-mode operation.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 8, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Federico Capasso, Benjamin G. Lee, Christian Pflugl, Laurent Diehl, Mikhail A. Belkin
  • Publication number: 20120243821
    Abstract: An optical filter and a method for fabricating an optical filter with a wide tuning range and a structure subject to miniaturization. The optical filter includes a bottom and a top dielectric layer with a stripe or film of metal between the dielectric layers which have dissimilar refractive index dispersion. The stripe of metal functions as a waveguide supporting a long-range surface plasmon polariton mode which will be achieved at wavelengths for which the refractive indices of the dielectric layers are the same thereby providing a bandpass filter. Furthermore, one of the dielectric layers is made of a material that allows its refractive index to be tuned, such as by changing its applied voltage or temperature. By tuning the refractive index of the dielectric layer, the wavelength at which the refractive indices of the dielectric layers match changes thereby effectively tuning the optical filter.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Mikhail Belkin, Jongwon Lee
  • Publication number: 20120207186
    Abstract: Quantum cascade lasers (QCLs), and methods of manufacture of QCLs, comprising an active portion. In some embodiments, the active portion can comprise: a plurality of tensiley strained quantum barrier layers, each comprising GayIn1-yAs; and a plurality of compressively strained quantum well layers, each comprising GaxIn1-xAs. In some embodiments, the active portion can comprise: a plurality of compressively strained quantum barrier layers, each comprising AlyIn1-yAs; and a plurality of tensiley strained quantum well layers, each comprising GaxIn1-xAs. The active portion can be grown on InP substrate.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 16, 2012
    Applicant: The Board of regents of the University of Texas System
    Inventors: Mikhail Belkin, William Masselink
  • Publication number: 20120167261
    Abstract: An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 28, 2012
    Inventors: Mikhail Belkin, Feng Lu, Vladislav V. Yakolev, Craig Prater, Kevin Kjoller
  • Publication number: 20120120972
    Abstract: The present invention provides a QCL device with an electrically controlled refractive index through the Stark effect. By changing the electric field in the active area, the energy spacing between the lasing energy levels may be changed and, hence, the effective refractive index in the spectral region near the laser wavelength may be controlled.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 17, 2012
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober, Mikhail Belkin
  • Publication number: 20120033697
    Abstract: A laser source based on a quantum cascade laser array (QCL), wherein the outputs of at least two elements in the array are collimated and overlapped in the far field using an external diffraction grating and a transform lens.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Anish Goyal, Benjamin G. Lee, Christian Pfluegl, Laurent Diehl, Mikhail Belkin, Antonio Sanchez-Rubio, Federico Capasso
  • Publication number: 20110310915
    Abstract: Methods and apparatus for improved single-mode selection in a quantum cascade laser. In one example, a distributed feedback grating incorporates both index-coupling and loss-coupling components. The loss-coupling component facilitates selection of one mode from two possible emission modes by periodically incorporating a thin layer of “lossy” semiconductor material on top of the active region to introduce a sufficiently large loss difference between the two modes. The lossy layer is doped to a level sufficient to induce considerable free-carrier absorption losses for one of the two modes while allowing sufficient gain for the other of the two modes. In alternative implementations, the highly-doped layer may be replaced by other low-dimensional structures such as quantum wells, quantum wires, and quantum dots with significant engineered intraband absorption to selectively increase the free-carrier absorption losses for one of multiple possible modes so as to facilitate single-mode operation.
    Type: Application
    Filed: November 5, 2009
    Publication date: December 22, 2011
    Applicant: President and Fellows of Harvard College
    Inventors: Federico Capasso, Benjamin G. Lee, Christian Pflugl, Laurent Diehl, Mikhail A. Belkin
  • Publication number: 20110222564
    Abstract: Apparatus and methods for generating radiation via difference frequency generation (DFG). In one exemplary implementation, a quantum cascade laser (QCL) has a significant second-order nonlinear susceptibility (?(2)) integrated in an active region of the QCL. The QCL is configured to generate first radiation at a first frequency ?1, second radiation at a second frequency ?2, and third radiation at a third frequency ?3=?1??2 based on difference frequency generation (DFG) arising from the nonlinear susceptibility. In one aspect, the QCL may be configured to generate appreciable THz radiation at room temperature.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicants: President and Fellows of Harvard College, The Texas A&M University System, Harvard University & Medical School
    Inventors: Mikhail A. Belkin, Federico Capasso, Alexey Belyanin
  • Patent number: 7974325
    Abstract: Apparatus and methods for generating radiation via difference frequency generation (DFG). In one exemplary implementation, a quantum cascade laser (QCL) has a significant second-order nonlinear susceptibility (?(2)) integrated in an active region of the QCL. The QCL is configured to generate first radiation at a first frequency ?1, second radiation at a second frequency ?2, and third radiation at a third frequency ?3=?1??2 based on difference frequency generation (DFG) arising from the non-linear susceptibility. In one aspect, the QCL may be configured to generate appreciable THz radiation at room temperature.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: July 5, 2011
    Assignees: President and Fellows of Harvard College, The Texas A&M University System, Harvard University & Medical School
    Inventors: Mikhail A. Belkin, Federico Capasso, Alexey Belyanin
  • Publication number: 20110058176
    Abstract: A mid infrared spectrometer comprises a high brightness broadband source that generates an output with a broad spectral range in the order of hundreds of wave numbers, a wavelength dispersive element and a detector. In one embodiment, the source comprises an array of semiconductor laser devices operating simultaneously. Each device emits light at wavelength different from the wavelengths emitted by the other devices in the array and the devices are arranged so that the combined output continuously covers the broad spectral range. In another embodiment, each of the lasers in the array is a quantum cascade laser device. In still another embodiment, the quantum cascade laser devices in the array are operated in the regime of Risken-Nummedal-Graham-Haken (RNGH) instabilities. In yet another embodiment, each of the lasers in the array is a mode-locked quantum cascade laser device.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 10, 2011
    Applicants: Bruker Optics, Inc., Presidents and Fellows of Harvard College
    Inventors: Christian Pflugl, Benjamin G. Lee, Laurent Diehl, Mikhail A. Belkin, Federico Capasso, Thomas J. Tague, JR.
  • Publication number: 20100309942
    Abstract: Quantum cascade lasers (QCLs) with intra-cavity second-harmonic generation configured to emit light in the ?=2.5-3.8 ?m band, and methods of use and manufacture.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 9, 2010
    Inventor: Mikhail Belkin
  • Patent number: 7826509
    Abstract: A broadly tunable single-mode infrared laser source based on semiconductor lasers. The laser source has two parts: an array of closely-spaced DFB QCLs (or other semiconductor lasers) and a controller that can switch each of the individual lasers in the array on and off, set current for each of the lasers and, and control the temperature of the lasers in the array. The device can be used in portable broadband sensors to simultaneously detect a large number of compounds including chemical and biological agents. A microelectronic controller is combined with an array of individually-addressed DFB QCLs with slightly different DFB grating periods fabricated on the same broadband (or multiple wavelengths) QCL material. This allows building a compact source providing narrow-line broadly-tunable coherent radiation in the Infrared or Terahertz spectral range (as well as in the Ultraviolet and Visible spectral ranges, using semiconductor lasers with different active region design).
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 2, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Mikhail A. Belkin, Benjamin G. Lee, Ross M. Audet, James B. MacArthur, Laurent Diehl, Christian Pflügl, Federico Capasso
  • Publication number: 20100135337
    Abstract: Apparatus and methods for generating radiation via difference frequency generation (DFG). In one exemplary implementation, a quantum cascade laser (QCL) has a significant second-order nonlinear susceptibility (?(2)) integrated in an active region of the QCL. The QCL is configured to generate first radiation at a first frequency ?1, second radiation at a second frequency ?2, and third radiation at a third frequency ?3=?1??2 based on difference frequency generation (DFG) arising from the non-linear susceptibility. In one aspect, the QCL may be configured to generate appreciable THz radiation at room temperature.
    Type: Application
    Filed: March 14, 2008
    Publication date: June 3, 2010
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Mikhail A. Belkin, Federico Capasso, Alexey Belyanin
  • Publication number: 20080144677
    Abstract: A broadly tunable single-mode infrared laser source based on semiconductor lasers. The laser source has two parts: an array of closely-spaced DFB QCLs (or other semiconductor lasers) and a controller that can switch each of the individual lasers in the array on and off, set current for each of the lasers and, and control the temperature of the lasers in the array. The device can be used in portable broadband sensors to simultaneously detect a large number of compounds including chemical and biological agents. A microelectronic controller is combined with an array of individually-addressed DFB QCLs with slightly different DFB grating periods fabricated on the same broadband (or multiple wavelengths) QCL material. This allows building a compact source providing narrow-line broadly-tunable coherent radiation in the Infrared or Terahertz spectral range (as well as in the Ultraviolet and Visible spectral ranges, using semiconductor lasers with different active region design).
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Mikhail A. Belkin, Benjamin G. Lee, Ross M. Audet, James B. MacArthur, Laurent Diehl, Christian Pflugl, Federico Capasso