Patents by Inventor Mikhail D. Lukin
Mikhail D. Lukin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12218268Abstract: An optical device useful for spatial light modulation.Type: GrantFiled: February 23, 2022Date of Patent: February 4, 2025Assignee: President and Fellows of Harvard CollegeInventors: Trond I. Andersen, Ryan J. Gelly, Giovanni Scuri, Bo L. Dwyer, Dominik S. Wild, Rivka Bekenstein, Andrey Sushko, Susanne F. Yelin, Philip Kim, Hongkun Park, Mikhail D. Lukin
-
Patent number: 12165004Abstract: Systems and methods relate to selectively arranging a plurality of qubits into a spatial structure to encode a quantum computing problem. Exemplary arrangement techniques can be applied to encode various quantum computing problems. The plurality of qubits can be driven according to various driving techniques into a final state. The final state can be measured to identify an exact or approximate solution to the quantum computing problem.Type: GrantFiled: August 30, 2019Date of Patent: December 10, 2024Assignee: President and Fellows of Harvard CollegeInventors: Hannes Pichler, Shengtao Wang, Leo Xiangyu Zhou, Soonwon Choi, Mikhail D. Lukin
-
Publication number: 20240346352Abstract: Dynamically reconfigurable architectures for quantum information and simulation are provided. A plurality of neutral atoms is provided. Each neutral atom is disposed in a corresponding optical trap. Each of the plurality of neutral atoms is prepared in a mF=0 clock state. A pair of neutral atoms of the plurality of neutral atoms is entangled by directing a laser pulse thereto. The laser pulse is configured to transition the pair of neutral atoms through a Rydberg state. The optical trap corresponding to at least one neutral atom of the pair is adiabatically moved, thereby moving one atom of the pair relative to the other atom of the pair without destroying entanglement of the pair.Type: ApplicationFiled: August 2, 2022Publication date: October 17, 2024Inventors: Dolev Bluvstein, Harry Jay Levne, Giulia Semeghini, Tout WANG, Sepehr Ebadi, Alexander Keesling Contreras, Mikhail D. Lukin, Markus Greiner, Vladan Vuletic
-
Publication number: 20240289665Abstract: A device includes a grouping of N qubits, where N is equal to two or more, and a coherent light source configured to, given selected values for a set of parameters of at least a first and a second laser pulse, the parameters selected from a relative phase shift, a laser frequency, a laser intensity, and a pulse duration: apply at least the first and second laser pulses to all qubits within the grouping of N qubits, thereby coupling a non-interacting quantum state |1 to an interacting excited state |r, such that each qubit that begins in quantum state |1 returns to the state |1 upon completion of the at least first and second laser pulses, and such that qubits in the grouping are mutually blockaded.Type: ApplicationFiled: January 11, 2022Publication date: August 29, 2024Inventors: Hannes Pichler, Harry Jay Levine, Mikhail D. Lukin, Ahmed Omran, Alexander Keesling Contreras, Giulia Semeghini, Vladan Vuletic, Markus Greiner, Tout Wang, Sepehr Ebadi
-
Patent number: 12051520Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.Type: GrantFiled: June 5, 2023Date of Patent: July 30, 2024Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of TechnologyInventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
-
Publication number: 20240220839Abstract: Systems and methods are disclosed for optically entangling distinguishable qubits. A system can include a first qubit having an optical transition at a first qubit frequency, a second qubit having an optical transition at a second qubit frequency, and a light source producing a first light beam having at least a first frequency. An interferometer can be configured to convert the first light beam into at least one second light beam, to provide the at least one second light beam to the first qubit and the second qubit, and to provide an output light signal. The interferometer can include a first optical modulator that converts the first light beam into the at least one second light beam, and a second optical modulator that produces the output light signal from the at least one second light beam.Type: ApplicationFiled: April 25, 2022Publication date: July 4, 2024Inventors: David S. Levonian, Ralf RIEDINGER, Bartholomeus MACHIELSE, Mihir Keshav BHASKAR, Mikhail D. LUKIN
-
Patent number: 12014246Abstract: Systems and methods are disclosed for making a quantum network node. A plurality of scoring function F values are calculated for an array of at least two photonic crystal cavity unit cells, each having a lattice constant a and a hole having a length Hx and a width Hy. A value of a, a value of Hx, and a value of Hy are selected for which a scoring function value is at a maximum. A waveguide region and the array of at least two photonic crystal cavity unit cells based on the selected values are formed on a substrate. At least one ion between a first photonic crystal cavity unit cell and a second photonic crystal cavity unit cell are implanted and annealed into a quantum defect. A coplanar microwave waveguide is formed on the substrate in proximity to the array of at least two photonic crystal cavity unit cells.Type: GrantFiled: July 16, 2020Date of Patent: June 18, 2024Assignee: President and Fellows of Harvard CollegeInventors: Mihir Keshav Bhaskar, Denis D. Sukachev, Christian Thieu Nguyen, Bartholomeus Machielse, David S. Levonian, Ralf Riedinger, Mikhail D. Lukin, Marko Loncar
-
Publication number: 20240185113Abstract: Error detection and correction in a quantum computer are provided. The quantum computer includes qubits encoding a plurality of data qudits and an ancilla qudit. The qubits encoding the plurality of data qudits are arranged into a grouping wherein the qubits encoding each of the data qudits are within an interaction distance of an interacting state of the qubits encoding the ancilla qudit. A leakage error of a first data qudit of the plurality of data qudits into the interacting state is detected by detecting a state of the ancilla qudit. Quantum states of the qudits are selected such that angular momentum selection rules prohibit mixing between the selected quantum states during a leakage error of one of the qudits into a noninteracting state. The leakage error is corrected by optical pumping of the noninteracting state, preserving coherence of the selected quantum states in the absence of the leakage error.Type: ApplicationFiled: November 17, 2023Publication date: June 6, 2024Inventors: Iris Cong, Shengtao Wang, Harry Jay Levine, Alexander Keesling Contreras, Mikhail D. Lukin
-
Patent number: 11985451Abstract: A method of generating uniform large-scale optical focus arrays (LOT As) with a phase spatial light modulator (SLM) includes identifying and removing undesired phase rotation in the iterative Fourier transform algorithm (IFTA), thereby producing computer-generated holograms of highly uniform LOT As using a reduced number of iterations as compared to a weighted Gerchberg-Saxton algorithm. The method also enables a faster compensation of optical system-induced LOT A intensity inhomogeneity than the conventional IFTA.Type: GrantFiled: February 21, 2020Date of Patent: May 14, 2024Assignees: President and Fellows of Harvard College, Massachusetts Institute of TechnologyInventors: Donggyu Kim, Alexander Keesling Contreras, Ahmed Omran, Harry Jay Levine, Hannes Bernien, Mikhail D. Lukin, Dirk R. Englund
-
Publication number: 20240029911Abstract: Topological qubits are provided in a quantum spin liquid. In various embodiments, a device is provided comprising a two-dimensional array of particles, each particle disposed at a vertex of a ruby lattice having a parameter ? greater than 1 2 ; each particle having a first state and an excited state; each particle that belongs to at least three unit cells of the ruby lattice having a blockade radius, when in the excited state, sufficient to blockade each of at least six nearest neighboring particles in the ruby lattice from transitioning from its first state to its excited state, and wherein the array has at least one outer edge configured to be in a first boundary condition.Type: ApplicationFiled: May 19, 2023Publication date: January 25, 2024Inventors: Mikhail D. Lukin, Vladan Vuletic, Markus Greiner, Ruben Verresen, Ashvin Vishwanath, Alexander Keesling Contreras, Harry Jay Levine, Giulia Semeghini, Tout Taotao Wang, Ahmed Omran, Dolev Bluvstein, Sepehr Ebadi
-
Publication number: 20230400492Abstract: A device, comprising at least one monochromatic light source configured to generate a first optical trap; an ensemble of particles disposed in the first optical trap, each particle of the ensemble of particles being excitable to a first Rydberg state and a second Rydberg state, the second Rydberg state having a blockade radius, each particle of the ensemble of particles being within the blockade radius of each other and within the blockade radius of an atomic qubit, the atomic qubit being a particle that is excitable to the second Rydberg state, the ensemble of particles having a first transmissivity at a first wavelength when neither any particle of the ensemble of particles nor the atomic qubit is in the second Rydberg state, the ensemble of particles having a second transmissivity at the first wavelength when the atomic qubit is in the second Rydberg state, the second transmissivity being lower than the first transmissivity; and a second monochromatic light source configured to drive each particle of the eType: ApplicationFiled: August 11, 2023Publication date: December 14, 2023Inventors: Wenchao Xu, Vladan Vuletic, Sergio Hiram Cantu, Valentin Klueseger, Aditya Vignesh Venkatramani, Mikhail D. Lukin, Tamara Sumarac
-
Publication number: 20230326623Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.Type: ApplicationFiled: June 5, 2023Publication date: October 12, 2023Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
-
Patent number: 11710579Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.Type: GrantFiled: June 2, 2022Date of Patent: July 25, 2023Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of TechnologyInventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
-
Publication number: 20230194343Abstract: Sources of shaped single photons based on an integrated diamond nanophotonic system are provided.Type: ApplicationFiled: December 19, 2022Publication date: June 22, 2023Inventors: Can M. Knaut, Mikhail D. Lukin, Marko Loncar, Erik N. Knail, Rivka Bekenstein, Daniel R. Assumpcao
-
Patent number: 11555738Abstract: Systems and methods are disclosed for controlling nonequilibrium electron transport process and generating phonons in low dimensional materials. The systems can include a conductive sheet sandwiched between a first insulation layer and a second insulation layer; a first electrode conductively coupled to a first end of the conductive sheet; a second electrode conductively coupled to a second end of the conductive sheet; and a current source conductively coupled to the first electrode and the second electrode and configured to pass a current from the first electrode through the conductive sheet to the second electrode such that current generates a drift velocity of electrons in the conductive sheet that is greater than the speed of sound to generate phonons.Type: GrantFiled: March 31, 2020Date of Patent: January 17, 2023Assignee: President and Fellows of Harvard CollegeInventors: Mikhail D. Lukin, Trond Ikdahl Andersen, Bo Loren Dwyer, Javier Daniel Sanchez, Kartiek Agarwal
-
Publication number: 20220391743Abstract: A system includes a quantum computer, and a computing node configured to: receive a description of a probability distribution, determine a first Hamiltonian having a ground state encoding the probability distribution, determine a second Hamiltonian, the second Hamiltonian being continuously transformable into the first Hamiltonian via a path through at least one quantum phase transition, and provide instructions to the quantum computer to: initialize a quantum system according to a ground state of the second Hamiltonian, and evolve the quantum system from the ground state of the second Hamiltonian to the ground state of the first Hamiltonian according to the path through the at least one quantum phase transition. The computing node is further configured to receive from the quantum computer a measurement on the quantum system, thereby obtaining a sample from the probability distribution.Type: ApplicationFiled: July 6, 2022Publication date: December 8, 2022Inventors: Dominik S. Wild, Dries Sels, Hannes Pichler, Mikhail D. Lukin
-
Publication number: 20220293293Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.Type: ApplicationFiled: June 2, 2022Publication date: September 15, 2022Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
-
Publication number: 20220271187Abstract: An optical device useful for spatial light modulation.Type: ApplicationFiled: February 23, 2022Publication date: August 25, 2022Inventors: Trond I. Andersen, Ryan J. Gelly, Giovanni Scuri, Bo L. Dwyer, Dominik S. Wild, Rivka Bekenstein, Andrey Sushko, Susanne F. Yelin, Philip Kim, Hongkun Park, Mikhail D. Lukin
-
Publication number: 20220269974Abstract: Systems and methods are disclosed for making a quantum network node. A plurality of scoring function F values are calculated for an array of at least two photonic crystal cavity unit cells, each having a lattice constant a and a hole having a length Hx and a width Hy. A value of a, a value of Hx, and a value of Hy are selected for which a scoring function value is at a maximum. A waveguide region and the array of at least two photonic crystal cavity unit cells based on the selected values are formed on a substrate. At least one ion between a first photonic crystal cavity unit cell and a second photonic crystal cavity unit cell are implanted and annealed into a quantum defect. A coplanar microwave waveguide is formed on the substrate in proximity to the array of at least two photonic crystal cavity unit cells.Type: ApplicationFiled: July 16, 2020Publication date: August 25, 2022Inventors: Mihir Keshav BHASKAR, Denis D. SUKACHEV, Christian Thieu NGUYEN, Bartholomeus MACHIELSE, David S. LEVONIAN, Ralf RIEDINGER, Mikhail D. LUKIN, Marko LONCAR
-
Patent number: 11380455Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.Type: GrantFiled: July 13, 2018Date of Patent: July 5, 2022Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, California Institute of TechnologyInventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov