Patents by Inventor MIKHAIL E. BASHTANOV
MIKHAIL E. BASHTANOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240277336Abstract: A surgical instrument is disclosed herein. The surgical instrument can include an end effector that includes jaws configured to transition between an opened condition and a closed condition, a plurality of electrodes positioned within the jaws of the end effector, a control circuit, and a memory configured to store an algorithm configured to cause the control circuit to determine an impedance signal based on signals received from the plurality of electrodes, detect a media positioned between the jaws of the end effector based on the determined impedance signal, determine a position of the detected media based on the received signals, and generate an alert associated with the detected media and the determined position.Type: ApplicationFiled: February 26, 2024Publication date: August 22, 2024Inventors: Zhijun Liu, Christopher J. Waid, Patrick L. Creamer, Morgan R. Hunter, Nathan P.K. Nguyen, Kevin D. Felder, James M. McKale, Jeffrey S. Swayze, Simon L. Calcutt, Elisa J. Barber, Matthew K. Sadler, Richard D. Lintern, James Richardson, Rita Stella, Mikhail E. Bashtanov
-
Patent number: 11957342Abstract: A surgical instrument is disclosed herein. The surgical instrument can include an end effector that includes jaws configured to transition between an opened condition and a closed condition, a plurality of electrodes positioned within the jaws of the end effector, a control circuit, and a memory configured to store an algorithm configured to cause the control circuit to determine an impedance signal based on signals received from the plurality of electrodes, detect a media positioned between the jaws of the end effector based on the determined impedance signal, determine a position of the detected media based on the received signals, and generate an alert associated with the detected media and the determined position.Type: GrantFiled: October 13, 2022Date of Patent: April 16, 2024Assignee: Cilag GmbH InternationalInventors: Zhijun Liu, Christopher J. Waid, Patrick L. Creamer, Morgan R. Hunter, Nathan P. K. Nguyen, Kevin D. Felder, James M. McKale, Jeffrey S. Swayze, Simon L. Calcutt, Elisa J. Barber, Matthew K. Sadler, Richard D. Lintern, James Richardson, Rita Stella, Mikhail E. Bashtanov
-
Publication number: 20240081741Abstract: Pressure sensing guidewires and methods for making and using pressure sensing guidewires are disclosed. An example pressure sensing guidewire may include a tubular member having a proximal region and a housing region. An optical pressure sensor may be disposed within the housing region. The optical pressure sensor may include a sensor body and a deflectable membrane coupled to the sensor body. The deflectable membrane may include a polymer. An optical fiber may be coupled to the sensor body and may extend proximally therefrom. A pressure equalization channel is formed in the optical fiber, the sensor body, or both.Type: ApplicationFiled: November 20, 2023Publication date: March 14, 2024Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: CORY P. WRIGHT, NATHANIEL STARK, WENGUANG LI, GAYLIN MILDRED YEE, NEIL POLLOCK, MIKHAIL E. BASHTANOV, FAHAD HUSSAIN, METTE FUNDING LA COUR
-
Patent number: 11850073Abstract: Pressure sensing guidewires and methods for making and using pressure sensing guidewires are disclosed. An example pressure sensing guidewire may include a tubular member having a proximal region and a housing region. An optical pressure sensor may be disposed within the housing region. The optical pressure sensor may include a sensor body and a deflectable membrane coupled to the sensor body. The deflectable membrane may include a polymer. An optical fiber may be coupled to the sensor body and may extend proximally therefrom. A pressure equalization channel is formed in the optical fiber, the sensor body, or both.Type: GrantFiled: March 21, 2019Date of Patent: December 26, 2023Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Cory P. Wright, Nathaniel Stark, Wenguang Li, Gaylin Mildred Yee, Neil Pollock, Mikhail E. Bashtanov, Fahad Hussain, Mette Funding La Cour
-
Publication number: 20230172604Abstract: A surgical instrument is disclosed herein. The surgical instrument can include an end effector that includes jaws configured to transition between an opened condition and a closed condition, a plurality of electrodes positioned within the jaws of the end effector, a control circuit, and a memory configured to store an algorithm configured to cause the control circuit to determine an impedance signal based on signals received from the plurality of electrodes, detect a media positioned between the jaws of the end effector based on the determined impedance signal, determine a position of the detected media based on the received signals, and generate an alert associated with the detected media and the determined position.Type: ApplicationFiled: October 13, 2022Publication date: June 8, 2023Inventors: Zhijun Liu, Christopher J. Waid, Patrick L. Creamer, Morgan R. Hunter, Nathan P. K. Nguyen, Kevin D. Felder, James M. McKale, Jeffrey S. Swayze, Simon L. Calcutt, Elisa J. Barber, Matthew K. Sadler, Richard D. Lintern, James Richardson, Rita Stella, Mikhail E. Bashtanov
-
Publication number: 20230133607Abstract: A surgical instrument is disclosed herein. The surgical instrument can include an end effector comprising a first jaw and a second jaw, a plurality of electrodes positioned within the jaws of the end effector, a flexible circuit comprising a conductive track configured for multiplexed transmission of a plurality of signals to and from the end effector, a control circuit communicably coupled to the plurality of electrodes via the flexible conductor, and a memory configured to store an algorithm configured to cause the control circuit to: receive signals from the plurality of electrodes; determine an impedance based on the signals received from the plurality of electrodes; detect a media positioned between the jaws of the end effector based on the impedance; determine a position of the detected media along the longitudinal axis based on the received signals; and generate an alert associated with the detected media and the determined position.Type: ApplicationFiled: October 13, 2022Publication date: May 4, 2023Inventors: Zhijun Liu, Christopher J. Waid, Patrick L. Creamer, Morgan R. Hunter, Nathan P. K. Nguyen, Kevin D. Felder, James M. McKale, Jeffrey S. Swayze, Simon L. Calcutt, Elisa J. Barber, Matthew K. Sadler, Richard D. Lintern, James Richardson, Rita Stella, Mikhail E. Bashtanov
-
Patent number: 11559213Abstract: Pressure sensing guidewires and methods for making and using pressure sensing guidewires are disclosed. An example pressure sensing guidewire may include a tubular member having a proximal region and a housing region. An optical fiber may be disposed within the tubular member and extend to the housing region. The optical fiber may have a distal end region with a cavity formed therein. A polymeric member disposed within the cavity. A reflective surface disposed along the polymeric member.Type: GrantFiled: April 5, 2019Date of Patent: January 24, 2023Assignee: Boston Scientific Scimed, Inc.Inventors: Cory P. Wright, Nathaniel Stark, Wenguang Li, Gaylin Mildred Yee, Neil Pollock, Mikhail E. Bashtanov, Fahad Hussain, Mette Funding La Cour
-
Publication number: 20190307338Abstract: Pressure sensing guidewires and methods for making and using pressure sensing guidewires are disclosed. An example pressure sensing guidewire may include a tubular member having a proximal region and a housing region. An optical fiber may be disposed within the tubular member and extend to the housing region. The optical fiber may have a distal end region with a cavity formed therein. A polymeric member disposed within the cavity. A reflective surface disposed along the polymeric member.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: CORY P. WRIGHT, NATHANIEL STARK, WENGUANG LI, GAYLIN MILDRED YEE, NEIL POLLOCK, MIKHAIL E. BASHTANOV, FAHAD HUSSAIN, METTE FUNDING LA COUR
-
Publication number: 20190290207Abstract: Pressure sensing guidewires and methods for making and using pressure sensing guidewires are disclosed. An example pressure sensing guidewire may include a tubular member having a proximal region and a housing region. An optical pressure sensor may be disposed within the housing region. The optical pressure sensor may include a sensor body and a deflectable membrane coupled to the sensor body. The deflectable membrane may include a polymer. An optical fiber may be coupled to the sensor body and may extend proximally therefrom. A pressure equalization channel is formed in the optical fiber, the sensor body, or both.Type: ApplicationFiled: March 21, 2019Publication date: September 26, 2019Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: CORY P. WRIGHT, NATHANIEL STARK, WENGUANG LI, GAYLIN MILDRED YEE, NEIL POLLOCK, MIKHAIL E. BASHTANOV, FAHAD HUSSAIN, METTE FUNDING LA COUR