Patents by Inventor Mikhail Krishtab

Mikhail Krishtab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923198
    Abstract: In a first aspect, the present disclosure relates to a method for forming a patterning mask over a layer to be patterned, the method comprising: (a) providing a first layer over a substrate, the substrate comprising the layer to be patterned, the first layer being capable to bond with a monolayer comprising a compound comprising a functional group for bonding to the first layer and a removable organic group, (b) bonding the monolayer to the first layer, (c) exposing the monolayer to an energy beam, thereby forming a pattern comprising a first area comprising the compound with the removable organic group and a second area comprising the compound not having the removable organic group, and (d) selectively depositing an amorphous carbon layer on top of the first area.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: March 5, 2024
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Mikhail Krishtab, Silvia Armini
  • Publication number: 20210375615
    Abstract: In a first aspect, the present disclosure relates to a method for forming a patterning mask over a layer to be patterned, the method comprising: (a) providing a first layer over a substrate, the substrate comprising the layer to be patterned, the first layer being capable to bond with a monolayer comprising a compound comprising a functional group for bonding to the first layer and a removable organic group, (b) bonding the monolayer to the first layer, (c) exposing the monolayer to an energy beam, thereby forming a pattern comprising a first area comprising the compound with the removable organic group and a second area comprising the compound not having the removable organic group, and (d) selectively depositing an amorphous carbon layer on top of the first area.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 2, 2021
    Inventors: Mikhail Krishtab, Silvia Armini
  • Patent number: 10685833
    Abstract: Example embodiments relate to selective deposition of metal-organic frameworks. One embodiment includes a method of forming a low-k dielectric film selectively on exposed dielectric locations in a substrate. The method includes selectively depositing a metal-containing film, using an area-selective deposition process, on the exposed dielectric locations using one or more deposition cycles. The method also includes providing, at least once, a vapor of at least one organic ligand to the deposited metal-containing film resulting in a gas-phase chemical reaction thereby obtaining a metal-organic framework which is the low-k dielectric film. The low-k dielectric film has gaps on locations where no metal-containing film was deposited.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: June 16, 2020
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Mikhail Krishtab, Silvia Armini, Ivo Stassen, Rob Ameloot
  • Publication number: 20190198391
    Abstract: Example embodiments relate to selective deposition of metal-organic frameworks. One embodiment includes a method of forming a low-k dielectric film selectively on exposed dielectric locations in a substrate. The method includes selectively depositing a metal-containing film, using an area-selective deposition process, on the exposed dielectric locations using one or more deposition cycles. The method also includes providing, at least once, a vapor of at least one organic ligand to the deposited metal-containing film resulting in a gas-phase chemical reaction thereby obtaining a metal-organic framework which is the low-k dielectric film. The low-k dielectric film has gaps on locations where no metal-containing film was deposited.
    Type: Application
    Filed: November 14, 2018
    Publication date: June 27, 2019
    Inventors: Mikhail Krishtab, Silvia Armini, Ivo Stassen, Rob Ameloot
  • Publication number: 20190135998
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 9, 2019
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Publication number: 20170021604
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Patent number: 9492841
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: November 15, 2016
    Assignees: IMEC, St. Petersburg Electrotechnical University
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab
  • Publication number: 20140291289
    Abstract: A method of etching a low-k material which is capable of decreasing a damage of the low-k material is provided. In the method, the low-k material is etched with a plasma of a mixture gas including NF3 gas and Cl2 gas. Utilization of the mixture gas enables to decrease a damage of the low-k material, enhance an etch rate and selectivity of the low-k material, and reduce the bottom surface roughness and water absorption of the low-k material.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 2, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Frederic LAZZARINO, Shigeru TAHARA, Mikhail KRISHTAB, Mikhail BAKLANOV
  • Publication number: 20130251978
    Abstract: Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 26, 2013
    Applicants: St. Petersburg Electrotechnical University, IMEC
    Inventors: Victor Luchinin, Svetlana Goloudina, Vyacheslav Pasyuta, Alexey Ivanov, Mikhail Baklanov, Mikhail Krishtab