Patents by Inventor Mikhail Merzliakov

Mikhail Merzliakov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230172975
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Application
    Filed: March 30, 2022
    Publication date: June 8, 2023
    Applicant: GR Intellectual Reserve, LLC
    Inventors: Adam R. Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliakov, Mark G. Mortenson
  • Publication number: 20210361699
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Application
    Filed: April 13, 2021
    Publication date: November 25, 2021
    Applicant: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20210236542
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 5, 2021
    Applicant: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Patent number: 11007573
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 18, 2021
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Patent number: 10980832
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: April 20, 2021
    Assignee: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20200188429
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 18, 2020
    Applicant: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Patent number: 10449217
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 22, 2019
    Assignee: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20190009342
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 10, 2019
    Applicant: Clene Nanomedicine, Inc.
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Patent number: 10035192
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 31, 2018
    Assignee: Clene Nanomedicine, Inc.
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Publication number: 20170348350
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Application
    Filed: March 21, 2017
    Publication date: December 7, 2017
    Applicant: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Patent number: 9603870
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 28, 2017
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Adam R. Dorfman, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20160317578
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Application
    Filed: July 7, 2016
    Publication date: November 3, 2016
    Applicant: GR Intellectual Reserve, LLC
    Inventors: Adam R. Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliakov, Mark G. Mortenson
  • Patent number: 9387225
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 12, 2016
    Inventors: Adam R. Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliakov, Mark G. Mortenson
  • Patent number: 9067263
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 30, 2015
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Publication number: 20150167189
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Application
    Filed: August 25, 2014
    Publication date: June 18, 2015
    Applicant: GR Intellecturl Reserve, LLC
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Publication number: 20130259903
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals.
    Type: Application
    Filed: July 8, 2010
    Publication date: October 3, 2013
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Adam R. Dorfman, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20110278178
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s) (e.g., colloids). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. Processing enhancers can be utilized alone or with a plasma. Semicontinuous and batch processes can also be utilized.
    Type: Application
    Filed: January 13, 2010
    Publication date: November 17, 2011
    Inventors: David Kyle Pierce, Mark Gordon Mortenson, David Andrew Bryce, Adam Robert Dorfman, Mikhail Merzliakov, Arthur Maxwell Grace
  • Patent number: 7626144
    Abstract: A method and apparatus for rapid temperature changes of thin samples is disclosed. The apparatus comprises of a thin-film resistive element embedded in a membrane, a narrow gap between the membrane and a heat sink, and a control circuit. The resistive element acts both as a heater and as a temperature sensor to reduce time constant of the control circuit. The gap between the membrane and the heat sink is filled with gas (e.g., N2 or He) acting as cooling medium with low thermal inertia. The temperature controller has a microsecond time constant, which allows adjusting rapidly the power applied to the membrane, depending on heat released/absorbed by a sample during an isotherm or during a given rate of temperature changes. The membrane has low thermal inertia and, coupled with high-speed temperature controller, allows controlled cooling and heating rates up to 100 000 K s?1 and higher. The method can be a core of any setup where controlled fast temperature-time profile of thin or small sample is desirable.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 1, 2009
    Inventor: Mikhail Merzliakov
  • Publication number: 20070206654
    Abstract: A method and apparatus for rapid temperature changes of thin samples is disclosed. The apparatus comprises of a thin-film resistive element embedded in a membrane, a narrow gap between the membrane and a heat sink, and a control circuit. The resistive element acts both as a heater and as a temperature sensor to reduce time constant of the control circuit. The gap between the membrane and the heat sink is filled with gas (e.g., N2 or He) acting as cooling medium with low thermal inertia. The temperature controller has a microsecond time constant, which allows adjusting rapidly the power applied to the membrane, depending on heat released/absorbed by a sample during an isotherm or during a given rate of temperature changes. The membrane has low thermal inertia and, coupled with high-speed temperature controller, allows controlled cooling and heating rates up to 100,000 K s?1 and higher. The method can be a core of any setup where controlled fast temperature-time profile of thin or small sample is desirable.
    Type: Application
    Filed: September 28, 2006
    Publication date: September 6, 2007
    Inventor: Mikhail Merzliakov
  • Patent number: 6497509
    Abstract: A method of measuring the absolute value of thermal conductivity of low thermal conducting solid materials is disclosed. Thermal conductivity and heat capacity of the sample are determined simultaneously in a single measurement with the prerequisite that these values are frequency independent. This method is realized on power-compensated differential scanning calorimeters without any modification in the measuring system. DSC is calibrated in a standard way for temperature and heat flow. The method uses temperature-time profiles consisting of one fast temperature jump of 0.5 to 2 K and an isotherm. The measuring time for each temperature is less than 1 min. As input parameters only sample thickness and contact area with the DSC furnace (or sample diameter if the sample is disk shaped) are needed together with sample mass. In addition to the sample thermal conductivity and heat capacity the effective thermal contact between sample and DSC furnace is determined.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: December 24, 2002
    Assignee: PerkinElmer Instruments LLC
    Inventors: Mikhail Merzliakov, Christoph Schick