Patents by Inventor Mikhail Sushchik

Mikhail Sushchik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11156548
    Abstract: A parameterized geometric model of a structure can be determined based on spectra from a wafer metrology tool. The structure can have geometry-induced anisotropic effects. Dispersion parameters of the structure can be determined from the parameterized geometric model. This can enable metrology techniques to measure nanostructures that have geometries and relative positions with surrounding structures that induce non-negligible anisotropic effects. These techniques can be used to characterize process steps involving metal and semiconductor targets in semiconductor manufacturing of, for example, FinFETs or and gate-all-around field-effect transistors.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 26, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Manh Nguyen, Phillip Atkins, Alexander Kuznetsov, Liequan Lee, Natalia Malkova, Paul Aoyagi, Mikhail Sushchik, Dawei Hu, Houssam Chouaib
  • Patent number: 11060982
    Abstract: Methods and systems for estimating values of parameters of interest from optical measurements of a sample early in a production flow based on a multidimensional optical dispersion (MDOD) model are presented herein. An MDOD model describes optical dispersion of materials comprising a structure under measurement in terms of parameters external to a base optical dispersion model. In some examples, a power law model describes the physical relationship between the external parameters and a parameter of the base optical dispersion model. In some embodiments, one or more external parameters are treated as unknown values that are resolved based on spectral measurement data. In some embodiments, one or more external parameters are treated as known values, and values of base optical dispersion model parameters, one or more external parameters having unknown values, or both, are resolved based on spectral measurement data and the known values of the one or more external parameters.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: July 13, 2021
    Assignee: KLA Corporation
    Inventors: Natalia Malkova, Mikhail Sushchik, Dawei Hu, Carlos L. Ygartua
  • Publication number: 20200292467
    Abstract: Methods and systems for estimating values of parameters of interest from optical measurements of a sample early in a production flow based on a multidimensional optical dispersion (MDOD) model are presented herein. An MDOD model describes optical dispersion of materials comprising a structure under measurement in terms of parameters external to a base optical dispersion model. In some examples, a power law model describes the physical relationship between the external parameters and a parameter of the base optical dispersion model. In some embodiments, one or more external parameters are treated as unknown values that are resolved based on spectral measurement data. In some embodiments, one or more external parameters are treated as known values, and values of base optical dispersion model parameters, one or more external parameters having unknown values, or both, are resolved based on spectral measurement data and the known values of the one or more external parameters.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Natalia Malkova, Mikhail Sushchik, Dawei Hu, Carlos L. Ygartua
  • Patent number: 10429296
    Abstract: A metrology system includes a controller coupled to a detector to generate a detection signal based on the reflection of an illumination beam from a multilayer film stack. The multilayer film stack may include one or more zones with a repeating pattern of two or more materials. The controller may generate a model of reflection of the illumination beam by modeling the zones as thick films having zone thicknesses and effective permittivity values using an effective medium model relating the effective permittivity values of the zones to permittivity values and volume fractions of constituent materials. The controller may further determine values of the zone thicknesses and the volume fractions using a regression of the detection signal based on the effective medium model and further determine average thickness values of the constituent materials based on the number of films, the zone thicknesses, the volume fractions, and the effective permittivity values.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: October 1, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Mark A. Neil, Mikhail Sushchik, Natalia Malkova
  • Publication number: 20190178788
    Abstract: A parameterized geometric model of a structure can be determined based on spectra from a wafer metrology tool. The structure can have geometry-induced anisotropic effects. Dispersion parameters of the structure can be determined from the parameterized geometric model. This can enable metrology techniques to measure nanostructures that have geometries and relative positions with surrounding structures that induce non-negligible anisotropic effects. These techniques can be used to characterize process steps involving metal and semiconductor targets in semiconductor manufacturing of, for example, FinFETs or and gate-all-around field-effect transistors.
    Type: Application
    Filed: March 28, 2018
    Publication date: June 13, 2019
    Inventors: Manh Nguyen, Phillip Atkins, Alexander Kuznetsov, Liequan Lee, Natalia Malkova, Paul Aoyagi, Mikhail Sushchik, Dawei Hu, Houssam Chouaib
  • Publication number: 20190033211
    Abstract: A metrology system includes a controller coupled to a detector to generate a detection signal based on the reflection of an illumination beam from a multilayer film stack. The multilayer film stack may include one or more zones with a repeating pattern of two or more materials. The controller may generate a model of reflection of the illumination beam by modeling the zones as thick films having zone thicknesses and effective permittivity values using an effective medium model relating the effective permittivity values of the zones to permittivity values and volume fractions of constituent materials. The controller may further determine values of the zone thicknesses and the volume fractions using a regression of the detection signal based on the effective medium model and further determine average thickness values of the constituent materials based on the number of films, the zone thicknesses, the volume fractions, and the effective permittivity values.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 31, 2019
    Inventors: Mark A. Neil, Mikhail Sushchik, Natalia Malkova
  • Patent number: 9127927
    Abstract: Provided are optimized scatterometry techniques for evaluating a diffracting structure. In one embodiment, a method includes computing a finite-difference derivative of a field matrix with respect to first parameters (including a geometric parameter of the diffracting structure), computing an analytic derivative of the Jones matrix with respect to the field matrix, computing a derivative of the Jones matrix with respect to the first parameters, and computing a finite-difference derivative of the Jones matrix with respect to second parameters (including a non-geometric parameter). In one embodiment, a method includes generating a transfer matrix having Taylor Series approximations for elements, and decomposing the field matrix into two or more smaller matrices based on symmetry between the incident light and the diffracting structure.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 8, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Jonathan Iloreta, Paul Aoyagi, Hanyou Chu, Jeffrey Chard, Peilin Jiang, Mikhail Sushchik, Leonid Poslavsky, Philip D. Flanner, III
  • Publication number: 20130158948
    Abstract: Provided are optimized scatterometry techniques for evaluating a diffracting structure. In one embodiment, a method includes computing a finite-difference derivative of a field matrix with respect to first parameters (including a geometric parameter of the diffracting structure), computing an analytic derivative of the Jones matrix with respect to the field matrix, computing a derivative of the Jones matrix with respect to the first parameters, and computing a finite-difference derivative of the Jones matrix with respect to second parameters (including a non-geometric parameter). In one embodiment, a method includes generating a transfer matrix having Taylor Series approximations for elements, and decomposing the field matrix into two or more smaller matrices based on symmetry between the incident light and the diffracting structure.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 20, 2013
    Inventors: Jonathan Iloreta, Paul Aoyagi, Hanyou Chu, Jeffrey Chard, Peilin Jiang, Mikhail Sushchik, Leonid Poslavsky, Phillip D. Flanner, III