Patents by Inventor Mikhail Toporkov

Mikhail Toporkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903793
    Abstract: Methods for automatically segmenting a 3D model of a patient's teeth may include scanning a patient's dentition and converting the scan data into a 3D model, including a sparse voxel representation of the 3D model. Features can be extracted from the sparse voxel representation of the 3D model and input into a machine learning model to train the machine learning model to segment the 3D model into individual dental components.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: February 20, 2024
    Assignee: Align Technology, Inc.
    Inventors: Christopher E. Cramer, Roman Gudchenko, Dmitrii Ischeykin, Vasily Paraketsov, Sergey Grebenkin, Denis Durdin, Dmitry Guskov, Nikolay Zhirnov, Mikhail Gorodilov, Ivan Potapenko, Anton Baskanov, Elizaveta Ulianenko, Alexander Vovchenko, Roman Solovyev, Aleksandr Sergeevich Karsakov, Aleksandr Anikin, Mikhail Toporkov
  • Publication number: 20230410495
    Abstract: A method includes receiving an image of a face, processing the image using a first trained machine learning model to determine a bounding shape around teeth in the image, cropping the image based on the bounding shape to produce a cropped image, processing the cropped image using an edge detection operation to generate edge data for the cropped image, and processing the cropped image and the edge data using a second trained machine learning model to label edges in the cropped image.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Inventors: Ya Xue, Yingjie Li, Chao Shi, Aleksandr Anikin, Mikhail Toporkov, Aleksandr Sergeevich Karsakov
  • Patent number: 11790643
    Abstract: A method includes receiving an image of a face of a patient, the image including a depiction of teeth; processing the image of the face using one or more trained machine learning model, wherein the one or more trained machine learning model outputs a pixel-level classification of pixels in the image, the pixel level classification comprising a first set of pixels classified as being inside of a bounding shape that bounds a first plurality of teeth depicted in the image and a second set of pixels classified as being outside of the first bounding shape; cropping the image of the face of the patient, wherein the cropped image comprises depictions of the first plurality of teeth; and performing one or more operations on the cropped image of the face of the patient.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 17, 2023
    Assignee: Align Technology, Inc.
    Inventors: Ya Xue, Yingjie Li, Chao Shi, Aleksandr Anikin, Mikhail Toporkov, Aleksandr Sergeevich Karsakov
  • Publication number: 20210264611
    Abstract: A method includes receiving an image of a face of a patient, the image including a depiction of teeth; processing the image of the face using one or more trained machine learning model, wherein the one or more trained machine learning model outputs a pixel-level classification of pixels in the image, the pixel level classification comprising a first set of pixels classified as being inside of a bounding shape that bounds a first plurality of teeth depicted in the image and a second set of pixels classified as being outside of the first bounding shape; cropping the image of the face of the patient, wherein the cropped image comprises depictions of the first plurality of teeth; and performing one or more operations on the cropped image of the face of the patient.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Inventors: Ya Xue, Yingjie Li, Chao Shi, Aleksandr Anikin, Mikhail Toporkov, Aleksandr Sergeevich Karsakov
  • Publication number: 20210196434
    Abstract: Provided herein are systems and methods for automatically segmenting a 3D model of a patient's teeth. A patient's dentition may be scanned. The scan data may be converted into a 3D model, including a sparse voxel representation of the 3D model. Features can be extracted from the sparse voxel representation of the 3D model and input into a machine learning model to train the machine learning model to segment the 3D model into individual dental components.
    Type: Application
    Filed: December 30, 2020
    Publication date: July 1, 2021
    Inventors: Christopher E. CRAMER, Roman GUDCHENKO, Dmitrii ISCHEYKIN, Vasily PARAKETSOV, Sergey GREBENKIN, Denis DURDIN, Dmitry GUSKOV, Nikolay ZHIRNOV, Mikhail GORODILOV, Ivan POTAPENKO, Anton BASKANOV, Elizaveta BORD, Alexander VOVCHENKO, Roman SOLOVYEV, Aleksandr Sergeevich KARSAKOV, Aleksandr ANIKIN, Mikhail TOPORKOV
  • Patent number: 10997727
    Abstract: A machine learning model is trained to define bounding shapes around teeth in images. The machine learning model is trained by receiving a training dataset comprising a plurality of images, each image of the plurality of images comprising a face and a provided bounding shape around teeth in the image. The training dataset is input into an untrained machine learning model. The untrained machine learning model is trained based on the training dataset to generate a trained machine learning model that defines bounding shapes around teeth in images, wherein for an input image the trained machine learning model is to output a mask that defines a bounding shape around teeth of the input image, wherein the mask indicates, for each pixel of the input image, whether that pixel is inside of a defined bounding shape or is outside of the defined bounding shape.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 4, 2021
    Assignee: Align Technology, Inc.
    Inventors: Ya Xue, Yingjie Li, Chao Shi, Aleksandr Anikin, Mikhail Toporkov, Aleksandr Sergeevich Karsakov
  • Publication number: 20190180443
    Abstract: A machine learning model is trained to define bounding shapes around teeth in images. The machine learning model is trained by receiving a training dataset comprising a plurality of images, each image of the plurality of images comprising a face and a provided bounding shape around teeth in the image. The training dataset is input into an untrained machine learning model. The untrained machine learning model is trained based on the training dataset to generate a trained machine learning model that defines bounding shapes around teeth in images, wherein for an input image the trained machine learning model is to output a mask that defines a bounding shape around teeth of the input image, wherein the mask indicates, for each pixel of the input image, whether that pixel is inside of a defined bounding shape or is outside of the defined bounding shape.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 13, 2019
    Inventors: Ya Xue, Yingjie Li, Chao Shi, Aleksandr Anikin, Mikhail Toporkov, Aleksandr Sergeevich Karsakov