Patents by Inventor Miki Mizawa

Miki Mizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230282817
    Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35 r of the center.
    Type: Application
    Filed: April 11, 2023
    Publication date: September 7, 2023
    Applicants: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.
    Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita
  • Patent number: 11658295
    Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35r of the center.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: May 23, 2023
    Assignees: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.
    Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita
  • Publication number: 20200020941
    Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35 r of the center.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 16, 2020
    Applicants: Panasonic Corporation, SANYO Electric Co., Ltd.
    Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita