Patents by Inventor Mikiharu Kuwahara

Mikiharu Kuwahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220357086
    Abstract: A refrigeration cycle device includes: a compressor having a compression mechanism forming a compression chamber for compressing refrigerant, and a cooled portion cooled by the refrigerant before being compressed by the compression mechanism; a radiator that radiates the refrigerant compressed by the compressor; a decompressor that decompresses the refrigerant radiated by the radiator; an evaporator that evaporates the refrigerant decompressed by the decompressor; an acquisition unit that acquires the state of the refrigerant after cooling the cooled portion and before flowing into the compression chamber; and a control unit that controls the superheat degree of the refrigerant flowing into the compression chamber based on the state of the refrigerant acquired by the acquisition unit.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Masafumi NAKASHIMA, Atsushi INABA, Mikiharu KUWAHARA, Yuuichi KAMI, Hiroshi MIEDA
  • Publication number: 20220275982
    Abstract: A refrigeration cycle device includes a compressor, an upstream branch portion, a heating portion, a decompression portion, a bypass passage, a bypass flow adjustment portion, and a mixing portion. The mixing portion mixes a bypass side refrigerant flowing out from the bypass flow adjustment portion with a decompression-portion side refrigerant flowing out from the decompression portion, and causes the mixed refrigerant to flow to a suction port side of the compressor. The mixing portion mixes the bypass side refrigerant and the decompression-portion side refrigerant such that an enthalpy difference obtained by subtracting an enthalpy of an ideal homogeneously mixed refrigerant from an enthalpy of a suction side refrigerant actually sucked into the compressor is equal to or less than a predetermined reference value.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicants: DENSO CORPORATION, DENSO CORPORATION
    Inventors: Hiroshi MIEDA, Atsushi INABA, Yuuichi KAMI, Mikiharu KUWAHARA, Masafumi NAKASHIMA
  • Patent number: 11254190
    Abstract: A refrigerant loop of a vapor injection heat pump includes a compressor, first and second expansion valves, and first and second separator valves. The separator valves allow an entire refrigerant flow to pass therethrough or operate to separate vapor and liquid components of expanded refrigerant and inject the vapor component into a suction port of the compressor. Vapor injection occurs in both heating and cooling modes of operation and may depend upon an ambient condition (e.g., high or low ambient temperatures). An accumulator receives an output refrigerant of the heat exchangers dependent upon the mode and directs a vapor component into another suction port of the compressor. A control module controls at least the first and second expansion valves and first and second separator valves dependent upon the mode of operation which include, among others, heating, cooling, and dehumidification and re-heating.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: February 22, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Jing He, Loren John Lohmeyer, III, Manfred Koberstein, Mikiharu Kuwahara, Masafumi Nakashima
  • Publication number: 20200398645
    Abstract: A refrigerant loop of a vapor injection heat pump includes a compressor, first and second expansion valves, and first and second separator valves. The separator valves allow an entire refrigerant flow to pass therethrough or operate to separate vapor and liquid components of expanded refrigerant and inject the vapor component into a suction port of the compressor. Vapor injection occurs in both heating and cooling modes of operation and may depend upon an ambient condition (e.g., high or low ambient temperatures). An accumulator receives an output refrigerant of the heat exchangers dependent upon the mode and directs a vapor component into another suction port of the compressor. A control module controls at least the first and second expansion valves and first and second separator valves dependent upon the mode of operation which include, among others, heating, cooling, and dehumidification and re-heating.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Inventors: Jing He, Loren John Lohmeyer, III, Manfred Koberstein, Mikiharu Kuwahara, Masafumi Nakashim
  • Patent number: 10752087
    Abstract: A refrigeration system for a vehicle is provided and includes inside and outside condenser circuits. The inside condenser circuit includes a first valve receiving a first portion of refrigerant out of a compressor, and a cabin condenser receiving and condensing the first portion from the first valve while heating an interior of a cabin. The outside condenser circuit includes: a second valve receiving a second portion of the refrigerant out of the compressor; an outside condenser receiving and compressing the second portion from the second valve; a reservoir downstream from the cabin condenser and the outside condenser receiving the first and second portions; a heat exchanger downstream from the reservoir; and a bypass valve connected in parallel with the heat exchanger. The heat exchanger and the bypass valve receive portions of the refrigerant from the reservoir. A control module controls positions of the first, second and bypass valves.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 25, 2020
    Assignees: DENSO International America, Inc., DENSO CORPORATION
    Inventors: Zhiwei Shan, Mikiharu Kuwahara
  • Patent number: 10538138
    Abstract: An air conditioning device has a blower, a compressor, a radiator, a decompressor, a heat absorber, and a controller. The compressor compresses and discharges a refrigerant. The radiator dissipates a heat of the refrigerant to the air thereby heating the air. The decompressor decompresses the refrigerant after the heat of the refrigerant is dissipated in the radiator. The refrigerant decompressed in the decompressor absorbs heat from outside air in the heat absorber. The controller determines whether the heat absorber is in a frosted state in which a frost is formed on the heat absorber or whether the heat absorber is in an estimated frosted state in which a frost is possibly formed on the heat absorber. The controller performs a frost delay control to delay a formation of the frost when the controller determines that the heat absorber is in the frosted state or the estimated frosted state.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 21, 2020
    Assignee: DENSO CORPORATION
    Inventors: Tomoyuki Nomura, Mikiharu Kuwahara
  • Patent number: 10493818
    Abstract: When performing dehumidification heating of a space to be air-conditioned, a refrigeration cycle device is switched to a refrigerant circuit in which a flow of a refrigerant flowing out of an interior radiator is branched, and one of the branched refrigerants is decompressed by an interior expansion valve to evaporate in an interior evaporator, while the other of the branched refrigerants flows into a high-pressure side refrigerant passage of an internal heat exchanger and is then decompressed by an exterior expansion valve to evaporate in an exterior heat exchanger. Further, in the refrigerant circuit, a flow of the refrigerant flowing out of the interior evaporator and a flow of the refrigerant flowing out of the exterior heat exchanger are merged into a low-pressure side refrigerant passage of the internal heat exchanger.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: December 3, 2019
    Assignee: DENSO CORPORATION
    Inventor: Mikiharu Kuwahara
  • Publication number: 20190210426
    Abstract: A refrigeration system for a vehicle is provided and includes inside and outside condenser circuits. The inside condenser circuit includes a first valve receiving a first portion of refrigerant out of a compressor, and a cabin condenser receiving and condensing the first portion from the first valve while heating an interior of a cabin. The outside condenser circuit includes: a second valve receiving a second portion of the refrigerant out of the compressor; an outside condenser receiving and compressing the second portion from the second valve; a reservoir downstream from the cabin condenser and the outside condenser receiving the first and second portions; a heat exchanger downstream from the reservoir; and a bypass valve connected in parallel with the heat exchanger. The heat exchanger and the bypass valve receive portions of the refrigerant from the reservoir. A control module controls positions of the first, second and bypass valves.
    Type: Application
    Filed: November 6, 2018
    Publication date: July 11, 2019
    Inventors: Zhiwei SHAN, Mikiharu KUWAHARA
  • Publication number: 20190128569
    Abstract: An ejector refrigeration circuit includes a compressor, a heating heat exchanger, a first decompressor, an exterior heat exchanger, a second decompressor, a cooling heat exchanger, a heating ejector, a heating-side gas-liquid separator, and a refrigerant circuit switch. The refrigerant circuit switch switches between a refrigerant circuit in a first dehumidifying-heating mode and a refrigerant circuit in a second dehumidifying-heating mode. A flow direction of the refrigerant through the exterior heat exchanger in the first dehumidifying-heating mode is the same as a flow direction of the refrigerant through the exterior heat exchanger in the second dehumidifying-heating mode. The flow direction of the refrigerant through the exterior heat exchanger in the first dehumidifying-heating mode is different from a flow direction of the refrigerant through the exterior heat exchanger in the heating mode.
    Type: Application
    Filed: December 19, 2018
    Publication date: May 2, 2019
    Inventors: Kazuhiro TADA, Hiroya HASEGAWA, Satoshi ITO, Mikiharu KUWAHARA
  • Publication number: 20190111756
    Abstract: A refrigeration cycle device includes a first refrigerant passage from a radiator to an outside heat exchanger, and a second refrigerant passage from the outside heat exchanger to a compressor via a first evaporator. A first expansion valve is disposed in the first refrigerant passage upstream of the outside heat exchanger. A second expansion valve is disposed in the second refrigerant upstream of the first evaporator. The refrigeration cycle device includes a third refrigerant passage that guides the refrigerant flowing between the radiator and the first expansion valve to bypass the first expansion valve and the outside heat exchanger to flow to the second refrigerant passage on the refrigerant flow downstream side of the first evaporator. A third expansion valve is disposed in the third refrigerant passage. A second evaporator is disposed in the third refrigerant passage on the refrigerant flow downstream side of the third expansion valve.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 18, 2019
    Inventors: Naoya MAKIMOTO, Mikiharu KUWAHARA
  • Publication number: 20180201088
    Abstract: An air conditioning device has a blower, a compressor, a radiator, a decompressor, a heat absorber, and a controller. The compressor compresses and discharges a refrigerant. The radiator dissipates a heat of the refrigerant to the air thereby heating the air. The decompressor decompresses the refrigerant after the heat of the refrigerant is dissipated in the radiator. The refrigerant decompressed in the decompressor absorbs heat from outside air in the heat absorber. The controller determines whether the heat absorber is in a frosted state in which a frost is formed on the heat absorber or whether the heat absorber is in an estimated frosted state in which a frost is possibly formed on the heat absorber. The controller performs a frost delay control to delay a formation of the frost when the controller determines that the heat absorber is in the frosted state or the estimated frosted state.
    Type: Application
    Filed: July 22, 2016
    Publication date: July 19, 2018
    Inventors: Tomoyuki NOMURA, Mikiharu KUWAHARA
  • Publication number: 20170151856
    Abstract: When performing dehumidification heating of a space to be air-conditioned, a refrigeration cycle device is switched to a refrigerant circuit in which a flow of a refrigerant flowing out of an interior radiator is branched, and one of the branched refrigerants is decompressed by an interior expansion valve to evaporate in an interior evaporator, while the other of the branched refrigerants flows into a high-pressure side refrigerant passage of an internal heat exchanger and is then decompressed by an exterior expansion valve to evaporate in an exterior heat exchanger. Further, in the refrigerant circuit, a flow of the refrigerant flowing out of the interior evaporator and a flow of the refrigerant flowing out of the exterior heat exchanger are merged into a low-pressure side refrigerant passage of the internal heat exchanger.
    Type: Application
    Filed: June 16, 2015
    Publication date: June 1, 2017
    Inventor: Mikiharu KUWAHARA
  • Patent number: 9494355
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: November 15, 2016
    Assignee: DENSO CORPORATION
    Inventors: Satoshi Itoh, Atsushi Inaba, Mikiharu Kuwahara
  • Publication number: 20150159933
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Application
    Filed: February 16, 2015
    Publication date: June 11, 2015
    Inventors: Satoshi ITOH, Atsushi INABA, Mikiharu KUWAHARA
  • Patent number: 8984903
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 24, 2015
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Atsushi Inaba, Mikiharu Kuwahara
  • Publication number: 20120255319
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicant: DENSO CORPORATION
    Inventors: Satoshi Itoh, Atsushi Inaba, Mikiharu Kuwahara
  • Patent number: 6871508
    Abstract: A refrigerant circuit in an air conditioner comprises a compressor that compresses a refrigerant, a condenser that liquefies the refrigerant, a pressure reducing device that reduces the pressure of the compressed refrigerant, and an evaporator that exchanges heat by utilizing the refrigerant and generates an air-conditioning air. The condenser comprises plural fin tubes, through which the refrigerant passes, two headers, to which both ends of the fin tubes are connected and which has a firm structure, upper and lower mounting brackets that are fixed to the headers, and vibration insulating materials that collaborate with pin members and support the condenser via the upper and lower mounting brackets. The valve unit is fixed to the header or to the upper or lower mounting bracket.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 29, 2005
    Assignee: Denso Corporation
    Inventors: Shigeki Wanami, Mikiharu Kuwahara, Kazuo Kito, Toshiya Nagasawa
  • Publication number: 20030177775
    Abstract: A refrigerant circuit in an air conditioner comprises a compressor that compresses a refrigerant, a condenser that liquefies the refrigerant, a pressure reducing device that reduces the pressure of the compressed refrigerant, and an evaporator that exchanges heat by utilizing the refrigerant and generates an air-conditioning air. The condenser comprises plural fin tubes, through which the refrigerant passes, two headers, to which both ends of the fin tubes are connected and which has a firm structure, upper and lower mounting brackets that are fixed to the headers, and vibration insulating materials that collaborate with pin members and support the condenser via the upper and lower mounting brackets. The valve unit is fixed to the header or to the upper or lower mounting bracket.
    Type: Application
    Filed: March 24, 2003
    Publication date: September 25, 2003
    Inventors: Shigeki Wanami, Mikiharu Kuwahara, Kazuo Kito, Toshiya Nagasawa
  • Patent number: 6516628
    Abstract: In a refrigerant cycle system, a low-pressure side gas-liquid separator is disposed between a refrigerant outlet side of an evaporator and a refrigerant suction side of a compressor so that gas refrigerant is sucked into the compressor, and a throttle passage through which liquid refrigerant is introduced into the compressor is disposed in the low-pressure side gas-liquid separator. Further, in a condenser for condensing gas refrigerant discharged from the compressor in a cooling mode, both first and second heat-exchanging units are provided in this order in a refrigerant flow direction, and a high-pressure side gas-liquid separator is disposed between the first and second heat-exchanging units.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 11, 2003
    Assignee: Denso Corporation
    Inventors: Satoshi Izawa, Yoshiaki Takano, Mikiharu Kuwahara
  • Publication number: 20020002841
    Abstract: In a refrigerant cycle system, a low-pressure side gas-liquid separator is disposed between a refrigerant outlet side of an evaporator and a refrigerant suction side of a compressor so that gas refrigerant is sucked into the compressor, and a throttle passage through which liquid refrigerant is introduced into the compressor is disposed in the low-pressure side gas-liquid separator. Further, in a condenser for condensing gas refrigerant discharged from the compressor in a cooling mode, both first and second heat-exchanging units are provided in this order in a refrigerant flow direction, and a high-pressure side gas-liquid separator is disposed between the first and second heat-exchanging units.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 10, 2002
    Inventors: Satoshi Izawa, Yoshiaki Takano, Mikiharu Kuwahara